首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of cholesterol with several cyclodextrins (CDs) was investigated in water using solubility method. It was found that heptakis (2,6-di-O-methyl)-beta-CD (DOM-beta-CD) forms two types of soluble complex, with molar ratios of 1 : 1 and 1 : 2 (cholesterol : DOM-beta-CD), and neither a soluble nor insoluble complex is formed between cholesterol and alpha-CD, beta-CD, and gamma-CD, although a minor soluble complex formation was observed between cholesterol and 2-hydroxylpropyl-beta-CD. The thermodynamic parameters for 1 : 1 and 1 : 2 complex formation of cholesterol with DOM-beta-CD obtained from the changes in K with temperature are as follows: DeltaG degrees (1 : 1)=-11.6 kJ/mol at 25 degrees C (K(1 : 1)=1.09x10(2) M(-1)); DeltaH degrees (1 : 1)=-3.38 kJ/mol; TDeltaS degrees (1 : 1)=8.25 kJ/mol; DeltaG degrees (1 : 2)=-27.1 kJ/mol at 25 degrees C (K(1 : 2)=5.68x10(4) M(-1)); DeltaH degrees (1 : 2)=-3.96 kJ/mol; and TDeltaS degrees (1 : 2)=23.2 kJ/mol. The formation of the 1 : 2 complex occurred much more easily than that of the 1 : 1 complex. The driving force for 1 : 1 and 1 : 2 complex formation was considered to be mainly hydrophobic interaction. Also, based on the measurements of proton nuclear magnetic resonance spectra and studies with Corey-Pauling-Koltun atomic models, the probable structutures of the 1 : 2 complex were estimated.  相似文献   

2.
Deoxyhemerythrin reacts with NO to form a 1:1 adduct shown spectrophotometrically. The kinetics of the formation have been studied directly by stopped-flow measurements at four different temperatures (0.0-23.6 degrees C). The kinetics of the dissociation have been studied, also by stopped-flow techniques, at five different temperatures (4.0-35.1 degrees C) using three different scavengers [Fe(II)(edta)2-, O2 and sperm whale deoxymyoglobin], which gave similar values. For the formation kf = (4.2 +/- 0.2) x 10(6) M-1 s-1, delta Hf not equal = 44.3 +/- 2.3 kJ mol-1, delta Sf not equal to = 30 +/- 8 J mol-1 K-1 and for the dissociation kd = 0.84 +/- 0.02 s-1, delta Hd not equal to 95.6 +/- 2.1 kJ mol-1 delta Sd not equal to = 74 +/- 7 J mol-1 K-1 (25 degrees C, I = 0.2 M and pH 7-8.1). From the kinetic data the thermodynamic data for the formation of HrNO were calculated: Kf = (5.0 +/- 0.3) x 10(6) M-1, delta H = -51.3 +/- 3.1 kJ mol-1 and delta S = -44 +/- 11 J mol-1 K-1 (25 degrees C). The kinetic data suggest that NO occupies the same iron(II) site in deoxyhemerythrin as oxygen does. The equilibrium constant for the formation of Fe(II)(edta)(NO)2- has been redetermined: K1 = (1.45 +/- 0.07) x 10(7) M-1, delta H = -77.5 +/- 1.5 kJ and mol-1 and delta S = -123.5 J mol-1 K-1 (25 degrees C).  相似文献   

3.
Synthesis of 1-methyl-2-fluoro-4,5-dicyanoimidazole was done by halogen exchange between 1-methyl-2-bromo-4,5-dicyanoimidazole and potassium fluoride. Halogen exchange between 1-methyl-2-bromo-4,5-dicyanoimidazole and lithium chloride in N-methylpyrrolidinone at 150 degrees C yielded 1-methyl-2-chloro-4,5-dicyanoimidazole, and additional heating to 210 degrees C resulted in the demethylation to yield 2-chloro-4,5-dicyanoimidazole. Thermolyses of the 2-halo-4,5-dicyanoimidazole derivatives (F, Cl) and 1-iodo-2-halo-4,5-dicyanoimidazole derivatives (Cl, Br, I) between 100 and 290 degrees C were found to yield Tris(imidazo)[1,2-a:1,2-c:1,2-e]-1,3,5-triazine-2,3,5,6,8,9-hexacarbonitrile, or HTT, with (C(5)N(4))(3) composition. HTT has been characterized and purified and the crystal structure obtained. Thermolysis of HTT at 490-500 degrees C gives a material with C/N = 1.020. The thermal properties of HTT and its decomposition products show thermal stability to 350 degrees C.  相似文献   

4.
Combustion calorimetry studies were used to determine the standard molar enthalpies of formation of o-, m-, and p-cresols, at 298.15 K, in the condensed state as Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,cr) = -204.2 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,l) = -196.6 +/- 2.1 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,cr) = -202.2 +/- 3.0 kJ.mol(-1). Calvet drop calorimetric measurements led to the following enthalpy of sublimation and vaporization values at 298.15 K: Delta(sub)H(m) degrees (o-CH(3)C(6)H(4)OH) = 73.74 +/- 0.46 kJ.mol(-1), Delta(vap)H(m) degrees (m-CH(3)C(6)H(4)OH) = 64.96 +/- 0.69 kJ.mol(-1), and Delta(sub)H(m) degrees (p-CH(3)C(6)H(4)OH) = 73.13 +/- 0.56 kJ.mol(-1). From the obtained Delta(f)H(m) degrees (l/cr) and Delta(vap)H(m) degrees /Delta(sub)H(m) degrees values, it was possible to derive Delta(f)H(m) degrees (o-CH(3)C(6)H(4)OH,g) = -130.5 +/- 2.7 kJ.mol(-1), Delta(f)H(m) degrees (m-CH(3)C(6)H(4)OH,g) = -131.6 +/- 2.2 kJ.mol(-1), and Delta(f)H(m) degrees (p-CH(3)C(6)H(4)OH,g) = -129.1 +/- 3.1 kJ.mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by the B3LYP/cc-pVDZ, B3LYP/cc-pVTZ, B3P86/cc-pVDZ, B3P86/cc-pVTZ, MPW1PW91/cc-pVTZ, CBS-QB3, and CCSD/cc-pVDZ//B3LYP/cc-pVTZ methods, were used to obtain the differences between the enthalpy of formation of the phenoxyl radical and the enthalpies of formation of the three methylphenoxyl radicals: Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (o-CH(3)C(6)H(4)O*,g) = 42.2 +/- 2.8 kJ.mol(-1), Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (m-CH(3)C(6)H(4)O*,g) = 36.1 +/- 2.4 kJ.mol(-1), and Delta(f)H(m) degrees (C(6)H(5)O*,g) - Delta(f)H(m) degrees (p-CH(3)C(6)H(4)O*,g) = 38.6 +/- 3.2 kJ.mol(-1). The corresponding differences in O-H bond dissociation enthalpies were also derived as DH degrees (C(6)H(5)O-H) - DH degrees (o-CH(3)C(6)H(4)O-H) = 8.1 +/- 4.0 kJ.mol(-1), DH degrees (C(6)H(5)O-H) - DH degrees (m-CH(3)C(6)H(4)O-H) = 0.9 +/- 3.4 kJ.mol(-1), and DH degrees (C(6)H(5)O-H) - DH degrees (p-CH(3)C(6)H(4)O-H) = 5.9 +/- 4.5 kJ.mol(-1). Based on the differences in Gibbs energies of formation obtained from the enthalpic data mentioned above and from published or calculated entropy values, it is concluded that the relative stability of the cresols varies according to p-cresol < m-cresol < o-cresol, and that of the radicals follows the trend m-methylphenoxyl < p-methylphenoxyl < o-methylphenoxyl. It is also found that these tendencies are enthalpically controlled.  相似文献   

5.
Tetrabutylammonium fluoride (TBAF) reacts with (halomethyl)diphenyl(para-substituted-phenyl)silanes (13, X = Cl), 14 (X = Br), and 15 (X = I) in ether solvents to give fluorodiphenyl(para-substituted-phenylmethyl)silanes (17a) and fluorophenyl(phenylmethyl)(para-substituted-phenyl)silanes (20a) by attack on silicon and migrations of the phenyl or the para-substituted-phenyl groups to C-1 with displacement of chloride ion. Sodium methoxide in dioxane effects rearrangement-displacements of 14 (X = Br) to yield methoxydiphenyl(para-substituted-phenylmethyl)silanes (17b) and methoxyphenyl(phenylmethyl)(para-substituted-phenyl)silanes (20b). The migratory aptitudes of the varied phenyl groups in rearrangement-displacements of 13 with F(-) at 25 degrees C are p-CF(3)-Ph, 2.72 > p-Cl-Ph, 1.67 > Ph, 1.00 > p-CH(3)-Ph, 0.91 > p-CH(3)O-Ph, 0.58 > p-(CH(3))(2)N-Ph, 0.55. For reactions of 14 with sodium methoxide in dioxane, the migratory aptitudes at 23 degrees C are p-CF(3)-Ph, 2.53 > p-Cl-Ph, 1.64 > Ph, 1.00 > p-CH(3)O-Ph, 0.84 > p-CH(5)-Ph, 0.79 > p-(CH(3))(2)N-Ph, 0.68. The migratory aptitudes in the above rearrangement-displacements are increased by electron-withdrawing substituents, and logarithms of the migratory aptitudes give satisfactory linear correlations with sigma and/or sigma-zero values of the phenyl substituents. Hammett correlations however of the migratory aptitudes from reactions of F(-) with 13 (X = Cl) at 0 and -20 degrees C, 14 (X = Br) at 23, 0, and -20 degrees C, and 15 (X = I) at 23 degrees C are not linear. (+)-(Bromomethyl)methyl-1-naphthylphenylsilane (23, +8.29 degrees, cyclohexane) reacts with CsF and with TBAF in THF to give benzylfluoromethyl-1-naphthylsilane (51, = 0.00 degrees, cyclohexane) and fluoromethyl-(1-naphthylmethyl)phenylsilane (52, impure) in 10.4:1 ratio along with unchanged 23 ( 8.29 degrees, cyclohexane). Sodium methoxide and (+)-23 in dioxane at 25 degrees C and at 0 degrees C yield (+)-benzylmethoxymethyl-1-naphthylsilane (64) and (+)-methoxymethyl(1-naphthylmethyl)phenylsilane (65) in approximately 9:1 ratio. The conversions of (+)-23 to (+)-64 occur with >93% inversion about silicon. Reaction of (+)-23 with sodium methoxide at 25 degrees C to give (+)-65 also occurs with inversion. Further, sodium ethoxide and sodium 2-propoxide react with (+)-23 at 20-25 degrees C by rearrangement-displacements on silicon with phenyl migrations to yield (+)-benzylethoxymethyl-1-naphthylsilane (69) and (+)-benzylmethyl-1-naphthyl-2-propoxysilane (70), respectively, each with >95% inversion about silicon. The mechanisms of rearrangement-displacements of 13-15 and (+)-23 by fluoride and by alkoxide ions are discussed.  相似文献   

6.
The mechanism of the cycloisomerization of dimethyl diallylmalonate (1) catalyzed by the cationic palladium phenanthroline complex [(phen)Pd(Me)CNCH(3)](+)[BAr(4)](-) [Ar = 3,5-C(6)H(3)(CF(3))(2)] (2) has been investigated. Heating a solution of 1 and 2 (5 mol %) in DCE at 40 degrees C led to zero-order decay of 1 to approximately 80% conversion (k(obs) = (7.1 +/- 0.3) x 10(-7) M s(-1)) with formation of a 27:2.2:1.0 mixture of 3,3-bis(carbomethoxy)-1,5-dimethylcyclopentene (3), 4,4-bis(carbomethoxy)-1,2-dimethylcyclopentene (4), and 1,1-bis(carbomethoxy)-4-methyl-3-methylenecyclopentane (5) and traces ( approximately 3.5%) of ethyl-substituted carbocycles 6 of the chemical formula C(12)H(18)O(4). Cyclopentenes 3 and 4 were formed both kinetically (3:4 = 30:1 at 40 degrees C) and via secondary isomerization of 5 (3:4 = 1:2.5 at 40 degrees C); the kinetic pathway accounted for the 93% of cyclopentene formation at 40 degrees C. Carbocycles 6 were formed predominantly (> or =90%) within the first two catalyst turnovers as byproducts of catalyst activation. Stoichiometric reaction of 1 and 2 at room temperature for 1.5 h led to the isolation of the palladium cyclopentyl chelate complex [carbohydrate structure-see text] in 26% yield as a approximately 2:1 mixture of isomers. The structure of trans,trans-7 was determined by X-ray crystallography. Kinetic studies of the formation of 7 established the rate law: rate = k[1][2], where k = (2.1 +/- 0.3) x 10(-2) M(-1) s(-1) (Delta G(*)(298K) = 19.7 +/- 0.1 kcal mol(-1)) at 25 degrees C. Thermolysis of 7 at 50 degrees C formed carbocycles 6 in 65% yield by GC analysis. (1)H and (13)C NMR analysis of an active catalyst system generated from 1 and a catalytic amount of 2 led to the identification of the cyclopentyl chelate complex [carbohydrate structure-see text] as the catalyst resting state. Cycloisomerization of 1-2,6-d(2) formed predominantly (approximately 90%) 3,3-bis(carbomethoxy)-5-deuterio-1-(deuteriomethyl)-5-methylcyclopentene (3-d(2)); no significant (< or =10%) kinetic isotope effect or intermolecular H/D exchange was observed. Cycloisomerization of 1-3,3,5,5-d(4) formed a 1:2.6 mixture of 3,3-bis(carbomethoxy)-2,4,4-trideuterio-1,5-dimethylcyclopentene (3-d(3)) and 3,3-bis(carbomethoxy)-2,4,4-trideuterio-5-(deuteriomethyl)-1-methylcyclo pentene (3-d(4)); while no significant (< or =10%) kinetic isotope effect was detected, extensive intermolecular H/D exchange was observed. These data are consistent with a mechanism involving hydrometalation of an olefin of 1, intramolecular carbometalation, isomerization via reversible beta-hydride elimination/addition, and turnover-limiting displacement of the cyclopentenes from palladium.  相似文献   

7.
The alkali dicyanamides M[N(CN)2] (M=K, Rb) were synthesized through ion exchange, and the corresponding tricyanomelaminates M3[C6N9] were obtained by heating the respective dicyanamides. The thermal behavior of the dicyanamides and their reaction to form the tricyanomelaminates were investigated by temperature-dependent X-ray powder diffractometry and thermoanalytical measurements. Potassium dicyanamide K[N(CN)2] was found to undergo four phase transitions: At 136 degrees C the low-temperature modification alpha-K[N(CN)2] transforms to beta-K[N(CN)2], and at 187degrees C the latter transforms to the high-temperature modification gamma-K[N(CN)2], which melts at 232 degrees C. Above 310 degrees C the dicyanamide ions [N(CN)2]- trimerize and the resulting tricyanomelaminate K3[C6N9] solidifies. Two modifications of rubidium dicyanamide have been identified: Even at -25 degrees C, the a form slowly transforms to beta-Rb[N(CN)2] within weeks. Rb[N(CN)2] has a melting point of 190 degrees C. Above 260 degrees C the dicyanamide ions [N(CN)2]- of the rubidium salt trimerize in the melt and the tricyanomelaminate Rb3[C6N9] solidifies. The crystal structures of all phases were determined by powder diffraction methods and were refined by the Rietveld method. alpha-K[N(CN)2] (Pbcm, a = 836.52(1), b = 46.90(1), c =7 21.27(1) pm, Z = 4), gamma-K[N(CN)2] (Pnma, a = 855.40(3), b = 387.80(1), 1252.73(4) pm, Z = 4), and Rb[N(CN)2] (C2/c, a = 1381.56(2), b = 1000.02(1), c = 1443.28(2) pm, 116.8963(6) degrees, Z = 16) represent new structure types. The crystal structure of beta-K[N(CN)2] (P2(1/n), a = -726.92(1), b 1596.34(2), c = 387.037(5) pm, 111.8782(6) degrees, Z = 4) is similar but not isotypic to the structure of alpha Na[N(CN)2]. alpha-Rb[N(CN)2] (Pbcm, a = 856.09(1), b = 661.711(7), c = 765.067(9) pm, Z = 4) is isotypic with alpha-K[N(CN)2]. The alkali dicyanamides contain the bent planar anion [N(CN)2]- of approximate symmetry C2, (average bond lengths: C-N(bridge) 133, C-N(term) 113 pm; average angles N-C-N 170 degrees, C-N-C 120 degrees). K3[C6N9] (P2(1/c), a = 373.82(1), b = 1192.48(5), c = 2500.4(1) pm, beta = 101.406(3) degrees, Z = 4) and Rb,[C6N9] (P2(1/c), a = 389.93(2), b = 1226.06(6), c = 2547.5(1) pm, 98.741(5) degrees, Z=4) are isotypic and they contain the planar cyclic anion [C6N9]3-. Although structurally related, Na3[C6N9] is not isotypic with the tricyanomelaminates M3[C6N9] (M = K, Rb).  相似文献   

8.
Silver ion HPLC (Ag-HPLC), utilizing columns containing silver ions bonded to a silica substrate and acetonitrile in hexane as solvent, has proven to be a powerful technology for the analysis of geometric (cis or trans) or positional fatty acids, fatty acid ester (primarily methyl ester; FAME), or triacylglycerol (TAG) isomers. Previous studies had demonstrated that, unlike gas chromatography, samples eluted more rapidly at lower temperatures (at 20 degrees C versus 40 degrees C, for example). A low-temperature bath [dual-column Ag-HPLC; isocratic solvent systems of 0.3 to 0.7% acetonitrile (ACN) in hexane] was utilized to study the application of this system at low (below 0 degrees C) temperatures for analysis of FAME (zero to six double bonds) and TAG [SSS, OOO and LLL, where S=stearic acid (18:0), O=oleic acid (9c-18:1), and L=linoleic acid (9c, 12c-18:2)] standards. While FAME elution times continued to decrease from 0 degrees C to -10 degrees C, they began to increase at -20 degrees C. A similar situation was noted for the TAG isomers, except that retention times began to increase below 0 degrees C. The lower temperature limit of the Ag-HPLC/ACN in hexane system is thus ca. -25 degrees C. Increasing sample elution times and pump head pressures upon sample injection were noted at temperatures of -25 degrees C to -40 degrees C. Equilibration times at each temperature could be reduced to ca. 15 min without loss of resolution and with retention times of +/-2%. Temperature, rather than solvent composition, can therefore be utilized with the Ag-HPLC/ACN in hexane solvent system to optimize elution times and resolution(s) of FAME and TAG isomers.  相似文献   

9.
The effects of introducing nitrogen atoms in the fjord regions and chalcogen bridges on the conformations of overcrowded bistricyclic aromatic enes (1, X not equal to Y) (BAEs) were studied. 9-(9'H-1',8'-Diazafluoren-9'-ylidene)-9H-thioxanthene (12), 9-(9H-1',8'-diazafluoren-9'-ylidene)-9H-selenoxanthene (13), 9-(9'H-1',8'-diazafluoren-9'-ylidene)-9H-telluroxanthene (14), 9-(9' H-1',8'-fluoren-9-ylidene)-9H-xanthene (15) and 9-(9' H-1',8'-fluoren-9'-ylidene)-9H-fluorene (16) were synthesized by two-fold extrusion coupling reactions of 1,8-diaza-9H-fluoren-9-one (19)/chalcoxanthenthiones (24-27) (or /9H-fluorene-9-thione (30)). The 1',8'-diazafluoren-9-ylidene-chalcoxanthenes (11) were compared with the respective fluoren-9-ylidene-chalcoxanthenes (10). The structures of 12-16 were established by 1H, 13C, 77Se, and 125Te NMR spectroscopies. The crystal and molecular structures of 12-14 were determined by X-ray analysis. The yellow molecules of 12-14 adopted mono-folded conformations with folding dihedrals in the chalocoxanthylidene moieties of 62.7 degrees (12), 62.4 degrees (13) and 59.9 degrees (14). The folding dihedrals in the respective 1',8'-diazafluorenylidene moieties were very small, ca. 2 degrees, compared with 10.2/8.0 degrees in (9'H-fluoren-9'-ylidene)-9H-selenoxanthene (7). A 5 degree pure twist of C9=C9' in 14 is noted. The degrees of overcrowding in the fjord regions of 12-14 (intramolecular non-bonding distances) were relatively small. The degrees of pyramidalization of C9 and C9' were 17.0/3.0 degrees (12), 17.4/2.4 degrees (13) and 2.2/2.2 degrees (14). These high values in 12 and 13 stem from the resistance of the 1.8-diazafluorenylidene moiety to fold and from the limits in the degrees of folding of the thioxanthylidene and selenoxanthylidene moieties (due to shorter S10-C4a/S10-C10a and Se10-C4a/Se10-C10a bonds, as compared with the respective Te-C bonds in 14). The molecules of 15 and 16 adopt twisted conformations, a conclusion drawn from the 1H NMR chemical shifts of the fjord regions protons (H1 and H8) at 8.70 (15) and 9.00 ppm (16) and from their colors and UV/VIS spectra: 15 is purple (lambdamax = 521 nm) and 16 is orange-red. A comparison of the NMR spectra of 11 and 10 (deltadelta = delta(11) -delta(10)) showed substantial downfield shifts of 0.56-0.62 ppm of the fjord regions protons of twisted 15 and 16: deltadelta (C9) were negative (upfield): -4.0 (12), -3.7 (13), -3.4 (14), -7.1 (15), -5.0 ppm (16), while deltadelta (C9') were positive (downfield) = +6.8 (12), +6.5 (13), +5.8 (14), + 11.7 (15), +7.7 ppm (16). In 15, deltadelta (C9) - deltadelta (C9') = + 18.8 ppm, attributed to a push-pull character and significant contributions of zwitterionic structures in the twisted conformation. The 77Se and 125Te NMR signals of 13 and 14 were shifted upfield relative to the respective fluorenylidene-chalcoxanthene derivatives: deltadelta77Se = 17.2 ppm and deltadelta125Te = 22.0 ppm. The presence of the nitrogen atoms (N1' and N8') in 13 and 14 causes shielding of the selenium and tellurium nuclei.  相似文献   

10.
We demonstrate constraint of peptide backbone and side-chain conformation with 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift, magic-angle spinning NMR experiments. In these experiments, polarization is transferred from (15)N[i] by ramped SPECIFIC cross polarization to the (13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1] resonances and evolves coherently under the correlated (1)H-(15)N and (1)H-(13)C dipolar couplings. The resulting set of frequency-labeled (15)N(1)H-(13)C(1)H dipolar spectra depend strongly upon the molecular torsion angles phi[i], chi1[i], and psi[i - 1]. To interpret the data with high precision, we considered the effects of weakly coupled protons and differential relaxation of proton coherences via an average Liouvillian theory formalism for multispin clusters and employed average Hamiltonian theory to describe the transfer of (15)N polarization to three coupled (13)C spins ((13)C(alpha)[i], (13)C(beta)[i], and (13)C(alpha)[i - 1]). Degeneracies in the conformational solution space were minimized by combining data from multiple (15)N(1)H-(13)C(1)H line shapes and analogous data from other 3D (1)H-(13)C(alpha)-(13)C(beta)-(1)H (chi1), (15)N-(13)C(alpha)-(13)C'-(15)N (psi), and (1)H-(15)N[i]-(15)N[i + 1]-(1)H (phi, psi) experiments. The method is demonstrated here with studies of the uniformly (13)C,(15)N-labeled solid tripeptide N-formyl-Met-Leu-Phe-OH, where the combined data constrains a total of eight torsion angles (three phi, three chi1, and two psi): phi(Met) = -146 degrees, psi(Met) = 159 degrees, chi1(Met) = -85 degrees, phi(Leu) = -90 degrees, psi(Leu) = -40 degrees, chi1(Leu) = -59 degrees, phi(Phe) = -166 degrees, and chi1(Phe) = 56 degrees. The high sensitivity and dynamic range of the 3D experiments and the data analysis methods provided here will permit immediate application to larger peptides and proteins when sufficient resolution is available in the (15)N-(13)C chemical shift correlation spectra.  相似文献   

11.
The synthesis and structural characterization of the first [1.1]chromarenophanes and the first [1.1]molybdarenophanes are described. A salt-metathesis reaction of [2-(Me 2NCH 2)C 6H 4]AlCl 2 with freshly prepared [Cr(LiC 6H 5) 2].TMEDA (TMEDA = N, N, N', N'-tetramethylethylenediamine) resulted in the dialumina[1.1]chromarenophane [{2-(Me 2NCH 2)C 6H 4}Al(eta (6)-C 6H 5) 2Cr] 2 ( 2a). The poor solubility of 2a in organic solvents prompted us to synthesize the new intramolecularly coordinated aluminum- and gallium dichlorides [5- tBu-2-(Me 2NCH 2)C 6H 3]ECl 2 [E = Al ( 3a), Ga ( 3b)] in which the phenyl group was equipped with a tert-butyl group. Salt-metathesis reactions of 3a and 3b, respectively, with freshly prepared [M(LiC 6H 5) 2].TMEDA (M = Cr, Mo) resulted in four new [1.1]metallarenophanes of the general type [{5- tBu-2-(Me 2NCH 2)C 6H 3}E(eta (6)-C 6H 5) 2M] 2 [E = Al, M = Cr ( 4a); E = Ga, M = Cr ( 4b); E = Al, M = Mo ( 5a); E = Ga, M = Mo ( 5b)]. 2a, 4a, b, and 5a, b have been structurally characterized by single-crystal analysis [ 2a.1/2C 6H 12: C 48H 56Al 2Cr 2N 2, monoclinic, P2 1/ c, a = 9.9117(9) A, b = 19.9361(16) A, c = 10.638(2) A, alpha = 90 degrees , beta = 112.322(5) degrees , gamma = 90 degrees , Z = 2; 4a.2C 6H 6: C 62H 72Al 2Cr 2N 2, monoclinic, P2 1/ c, a = 10.9626(9) A, b = 19.3350(18) A, c = 12.4626(9) A, alpha = 90 degrees , beta = 100.756(5) degrees , gamma = 90 degrees , Z = 2; 4b.2C 6H 6: C 62H 72Cr 2Ga 2N 2, monoclinic, P2 1/ c, a = 10.8428(2) A, b = 19.4844(4) A, c = 12.4958(2) A, alpha = 90 degrees , beta = 100.6187 degrees , gamma = 90 degrees , Z = 2; 5a.2C 6H 6: C 62H 72Al 2Mo 2N 2, triclinic, P1, a = 10.4377(4) A, b = 11.6510(4) A, c = 11.6514(4) A, alpha = 73.545(3) degrees , beta = 89.318(2) degrees , gamma = 76.120(2) degrees , Z = 1; 5b.2C 6H 6: C 62H 72Ga 2Mo 2N 2, triclinic, P1, a = 10.3451(5) A, b = 11.6752(6) A, c = 11.6900(5) A, alpha = 73.917(3) degrees , beta = 89.550(3) degrees , gamma = 76.774(2) degrees , Z = 1]. All five [1.1]metallarenophanes 2a, 4a, b, and 5a, b crystallize as anti isomers with both Me 2N donor groups in exo positions ( C i point group symmetry). The new [1.1]metallarenophanes show NMR spectra that can be interpreted as being caused by time-averaged C 2 h symmetrical species, which is consistent with the findings of their molecular structures in the solid state. Variable-temperature (1)H NMR measurements for 4a, b and 5a, b (500 MHz; -90 to 90 degrees C) revealed only peak broadening in the lower temperature range of -70 to -90 degrees C. (1)H NMR saturation transfer difference experiments did not show an expected anti-to-anti isomerization, rendering the new [1.1]metallacyclophanes rigid on the NMR time scale. Electrochemical measurements were performed for 4a, b and 5a, b. However, reproducible cyclic voltammograms could only be obtained for the two gallium species 4b and 5b, revealing the expected weak communication between the two transition-metal atoms in both compounds (class II).  相似文献   

12.
A method for enantioselective determination of bromocyclen enantiomers in fish tissue has been developed. The enantiomers were resolved by capillary gas chromatography (GC) using a commercial chiral column (CP-Chirasil-Dex CB) and a temperature program from 50 degrees C (held for 1 min), raised to 140 degrees C at 40 degrees C min(-1) and then raised at 0.2 degrees C min(-1) to 155 degrees C. This enantioselective gas chromatographic separation was combined with a clean-up/enrichment procedure based on solid-phase microextraction (SPME). Under SPME optimized conditions, precision, linearity range and detection limits of the developed SPME-enantioselective GC procedure were evaluated and compared using two different detection systems: a classical electron-capture detection (ECD) and an element specific detection using inductively coupled plasma mass spectrometry (ICP-MS). The SPME-GC-ECD method exhibited an excellent sensitivity, with detection limits of 0.2 ng L(-1) for each enantiomer of bromocyclen. Although ICP-MS offered poorer detection limits (7 ng L(-1) as Br, equivalent to 36 ng L(-1) of each enantiomer) than conventional ECD detector, it proved to be clearly superior in terms of selectivity. The relative potential and performance of the two compared methods for real-life analysis has been illustrated by the determination of enantiomers of bromocyclen in spiked tissue extracts of trout.  相似文献   

13.
A temperature-programmed packed capillary LC method with large-volume injection on-column focusing has been developed for screening and determination of 1-(2-methoxyphenyl)piperazine derivatives of airborne toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, hexamethylenediisocyanate and methylenebisphenyl-4,4-diisocyanate, based on sampling methods described in MDHS 25/3. Injection volumes up to 100 microl were successfully loaded onto the 250x0.32 mm I.D. capillary column packed with 3 microm Hypersil ODS particles. The isocyanate derivatives were loaded at 10 degrees C and eluted by a three-step temperature program starting at 10 degrees C for 10 min, followed by a temperature ramp of 2.5 degrees C min(-1) to 45 degrees C and then 9.9 degrees C min(-1) to 90 degrees C. The mobile phase consisted of acetonitrile-acetate buffer (3% triethylamine, pH 4.5) (45:55, v/v). The isocyanate derivatives were dissolved in acetonitrile-acetate buffer (3% triethylamine, pH 4.5) (30:70, v/v) to achieve sufficient focusing. The concentration limit of detection of the individual derivatives utilizing an "U" shaped flow cell with a 8.0 mm light path and an injection volume of 100 microl was 44, 87, 43 and 210 pg ml(-1) for toluene-2,6-diisocyanate, hexamethylenediisocyanate, toluene-2,4-diisocyanate and methylenebisphenyl-4,4-diisocyanate, respectively. Within the investigated concentration range, 10-500 ng ml(-1), the linear calibration curves gave correlation coefficients ranging from 0.994 to 0.998. The repeatability of the method with regard to retention time and peak height ranged from 0.3 to 1.1% and 1.1 to 2.3% (n=9) relative standard deviation, respectively. The average recovery of the method, with regard to toluene-2,4-diisocyanate, was 97.7+/-1.6% (n=9).  相似文献   

14.
The thermodynamic quantities associated to the transformation from graphite to multiwalled carbon nanotubes (MWCNTs) were determined by electromotive force (emf) and differential scanning calorimetry (DSC) measurements. From the emf versus T data of galvanic cell Mo|Cr(3)C(2), CrF2, MWCNTs|CaF2 s.c.|Cr(3)C(2), CrF2, graphite|Mo with CaF2 as solid electrolyte, Delta(r)H(T) degrees= 8.25 +/- 0.09 kJ mol(-1) and Delta(r)S(T) degrees= 11.72 +/- 0.09 JK(-1) mol(-1) were found at average temperature T = 874 K. The transformation enthalpy was also measured by DSC of the Mn(7)C(3) formation starting from graphite or MWCNTs. Thermodynamic values at 298 K were calculated to be: Delta(r)H(298) degrees = 9.0 +/- 0.8 kJ mol(-1) as averaged value from both techniques and Delta(r)S(298) degrees approximately Delta(r)S(T) degrees. At absolute zero, the residual entropy of MWCNTs was estimated 11.63 +/- 0.09 JK(-1) mol(-1), and transformation enthalpy Delta(r)H(0) degrees approximately Delta(r)H(298) degrees. The latter agrees satisfactorily with the theoretical calculations for the graphite-MWCNTs transformation. On thermodynamic basis, the transformation becomes spontaneous above 704 +/- 13 K.  相似文献   

15.
The group 13 dichlorides of formula Ar'MCl2 [Ar' = 8-(dimethylamino)-1-naphthyl (8-(Me2N)C10H6)], M = Al (1), Ga (2), and In (3), have been prepared via the salt elimination reaction of 1 equiv of Ar'Li with MCl3 in toluene solution at -78 degrees C. The reaction of 1 with LiAlH4 in diethyl ether solution at -78 degrees C produced the dihydride [Ar'AlH2]2 (4). The X-ray crystal structures of 1-4 have been determined and show that 1 and 2 are monomeric while 3 and 4 are dimeric in the solid state. The reaction of 1 with RLi in toluene solution at -78 degrees C results in ligand redistribution and formation of Ar'2AlR (R = Me (5), t-Bu (6)). The chloride analogue of 5 and 6, Ar'2AlCl (7), can be prepared directly from the reaction of 2 equiv of Ar'Li with AlCl3 in toluene solution at -78 degrees C. The homoleptic derivative Ar'3Al (8) was obtained when 3 equiv of Ar'Li was employed. Crystal data for 1: monoclinic, space group P2(1), a = 6.534(1) A, b = 10.801(1) A, c = 9.631(2) A, beta = 105.57(2) degrees, V = 654.8(2) A3, Z = 2, R = 0.0453. Crystal data for 2: monoclinic, space group P2(1), a = 6.552(2) A, b = 10.833(2) A, c = 9.601(2) A, beta = 106.05(2) degrees, V = 654.9(3) A3, Z = 2, R = 0.0609. Crystal data for 3: monoclinic, space group P2(1)/c, a = 7.401(2) A, b = 15.746 A, c = 10.801(4) A, beta = 92.37(3) degrees, V = 1257.6(7) A3, Z = 2, R = 0.0712. Crystal data for 4: monoclinic, space group P2(1)/c, a = 13.343(2) A, b = 11.228(2) A, c = 7.505(1) A, beta = 100.64(1) degrees, V = 1105.0(4) A3, Z = 4, R = 0.0560.  相似文献   

16.
By using Fourier transform near-infrared (NIR) absorption spectroscopy, the kinetic behaviors of quadricyclane isomerization, as catalyzed by anhydrous CuSO(4) in chloroform mixture with and without agitation, are presented. Given the acquired NIR spectra, the concentration decay of quadricyclane with the reaction time is determined with the aid of partial least-squares analysis. When the mixture is not agitated, the diffusion coefficients in chloroform are evaluated to be (3.8 +/- 0.1) x 10(-5) cm(2) s(-1) at 27 degrees C and (4.4 +/- 0.1) x 10(-5) cm(2) s(-1) at 39 degrees C. In the size-dependent experiments of the catalyst, the one-site and two-site coordinated conversion rate constants are further determined to be (8.5 +/- 5.9) x 10(-6) s(-1) A(-1) and (2.2 +/- 0.8) x 10(-8) s(-1) A(-2), respectively, at 27 degrees C and (1.3 +/- 0.8) x 10(-5) s(-1) A(-1) and (1.92 +/- 0.01) x 10(-6) s(-1) A(-2), respectively, at 39 degrees C. A denotes the total catalyst surface area per unit effective volume of solvent. Accordingly, the activation energies for one-site and two-site coordination are evaluated to be 24.8 and 286.2 kJ mol(-1), respectively. The reaction is dominated by one-site coordination (1:1 complex) between the reactant and the catalyst. Unless temperature increases, the two-site coordinated reaction may be ignored. In contrast, when analogous experiments are performed in the stirred solution, the diffusion factor is ignored but the conversion rate constants rise due to the increase of collision frequency. For instance, the one-site and two-site coordinated rate constants are increased to (1.7 +/- 1.4) x 10(-5) s(-1) A(-1) and (1.27 +/- 0.06) x 10(-5) s(-1) A(-2) at 39 degrees C. The two-site coordinated reaction rate is enhanced by a factor of 10. Thus, isomerization may proceed via both 1:1 and 1:2 coordination between the reactant and the catalyst. The Arrhenius plot yields the corresponding activation energies to be 24 +/- 3 and 275 +/- 3 kJ mol(-1). The activation energies remain constant, no matter whether the solution is agitated or not.  相似文献   

17.
Binding of adenosine to the thermosensitive copolymer of N-isopropylacrylamide and 3-(acrylamido)aminophenylboronic acid (82:18, Mn = 47,000 g . mol(-1)) was studied by equilibrium dialysis at 22 degrees C and 37 degrees C, in a 0.1 M glycine buffer containing 0.1 M NaCl at pH 9.2. The copolymer exhibited a the phase transition temperature (T(p)) of 26.5 degrees C under the above conditions. At 22 degrees C the binding of adenosine to the water-soluble copolymer was well described by a Langmuir model, accounting for preferential ionisation of the boronate-nucleoside complexes and, therefore, restricted reactivity of the rest of boronates. At saturation, the copolymer contained 38% of its phenylboronic acid groups in the form of complexes, whereas the association constant was 1,400 M(-1). At 37 degrees C no binding of adenosine to thermally precipitated copolymer was found, presumably owing to interaction of the phenylboronates with hydrophobic segments of polyNIPAM. At high loading of the copolymer by the reversibly bound adenosine the T(p) steeply increases with increasing fraction of the phenylboronate-adenosine complexes in the chains. The increase of the T(p) observed above the saturating adenosine concentration (>1 x 10(-3) M, 22 degrees C) very probably testifies to competition of the nucleoside with hydrophobic polyNIPAM segments for binding to the pendant phenylboronates.  相似文献   

18.
Ten 1:1 and 2:1 complexes of [Mn(CO)(3)](+) and [Re(CO)(3)](+) with [Nb(6)O(19)](8)(-) and [Ta(6)O(19)](8)(-) have been isolated as potassium salts in good yields and characterized by elemental analysis, (17)O NMR and infrared spectroscopy, and single-crystal X-ray structure determinations. Crystal data for 1 (t-Re(2)Ta(6)): empirical formula, K(4)Na(2)Re(2)C(6)Ta(6)O(35)H(20), monoclinic, space group, C2/m, a = 17.648(3) A, b = 10.056(1) A, c = 13.171(2) A, beta = 112.531(2) degrees, Z = 2. 2 (t-Re(2)Nb(6)): empirical formula, K(6)Re(2)C(6)Nb(6)O(38)H(26), monoclinic, space group, C2/m, a = 17.724(1) A, b = 10.0664(6) A, c = 13.1965(7) A, beta = 112.067(1) degrees, Z = 2. 3 (t-Mn(2)Nb(6)): empirical formula, K(6)Mn(2)C(6)Nb(6)O(37)H(24), monoclinic, space group, C2/m, a = 17.812(2) A, b = 10.098(1) A, c = 13.109(2) A, beta = 112.733(2) degrees, Z = 2. 4 (c-Mn(2)Nb(6)): empirical formula, K(6)Mn(2)C(6)Nb(6)O(50)H(50), triclinic, space group, P1, a = 10.2617(6) A, b = 13.4198(8) A, c = 21.411(1) A, alpha = 72.738(1) degrees, beta = 112.067(1) degrees, gamma = 83.501(1) degrees, Z = 2. 5 (c-Re(2)Nb(6)): empirical formula, K(6)Re(2)C(6)Nb(6)O(54)H(58), monoclinic, space group, P2(1)/c, a = 21.687(2) A, b = 10.3085(9) A, c = 26.780(2) A, beta = 108.787(1) degrees, Z = 4. The complexes contain M(CO)(3) groups attached to the surface bridging oxygen atoms of the hexametalate anions to yield structures of nominal C(3)(v)() (1:1), D(3)(d)() (trans 2:1), and C(2)(v)() (cis 2:1) symmetry. The syntheses are carried out in aqueous solution or by aqueous hydrothermal methods, and the complexes have remarkably high thermal, redox, and hydrolytic stabilities. The Re-containing compounds are stable to 400-450 degrees C, at which point CO loss occurs. The Mn compounds lose CO at temperatures above 200 degrees C. Cyclic voltammetry of all complexes in 0.1 M sodium acetate show no redox behavior, except an irreversible oxidation process at approximately 1.0 V vs. Ag/AgCl. In contrast to the parent hexametalate anions that are stable only in alkaline (pH >10) solution, the new complexes are stable, at least kinetically, between pH 4 and pEta approximately 12.  相似文献   

19.
The infrared (3200-40 cm(-1)) spectra of gaseous and solid 1,1-dicyclopropylethene, (c-C3H5)2C=CH2, along with the Raman (3200-40 cm(-1)) spectra of liquid and solid phases, have been recorded. The major trans-gauche (C=C bond trans to one ring with the other ring rotated about 60 degrees from the C=C bond, trivial C(1) symmetry) and gauche-gauche (the two three-membered rings rotated oppositely about 60 degrees from the C=C bond, C2 symmetry) rotamers have been confidently identified in the fluid phases, but no definitive spectroscopic evidence was found for the gauche-gauche' form (the two three-membered rings rotated to the same side about 60 degrees from the C=C bond, Cs symmetry), which is calculated to be present in no more than 6% at ambient temperature. Variable-temperature (-55 to -100 degrees C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. Utilizing six different combinations of pairs of bands from the C1 and C2 conformers, the average enthalpy difference between these two has been determined to be 146 +/- 30 cm(-1) (1.75 +/- 0.36 kJ x mol(-1)), with the C1 form more stable. Given statistical weights of 2:1:1 respectively for the C1, C2, and Cs forms, it is estimated that there are 75 +/- 2% C(1) and 19 +/- 1% C2 conformers present at ambient temperature. By utilizing predicted frequencies, infrared intensities, Raman activities, and band envelopes from scaled MP2(full)/6-31G(d) ab initio calculations, a complete vibrational assignment is made for the C1 form and a number of fundamentals of the C2 conformer have been identified. The structural parameters, dipole moments, and conformational stabilities have been obtained from ab initio calculations at the level of Hartree-Fock (RHF), the perturbation method to second order with full electron correlation (MP2(full)), and hybrid density functional theory (DFT) by the B3LYP method with a variety of basis sets. The predicted conformational stabilities from the MP2 calculations with relatively large basis sets are consistent with the experimental results. Structural parameters are estimated from the MP2(full)/6-311+G(d,p) predictions which are compared to the previously reported electron diffraction parameters. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

20.
The regioisomer ratios (3 degrees,2 degrees /2 degrees,3 degrees ), and in some cases the stereochemistry, of vicinal azidohydrins formed in reactions of 11 trisubstituted terpene epoxides with Et(2)AlN(3) in toluene are reported. The more highly substituted azide usually predominated (3 degrees,2 degrees /2 degrees,3 degrees ratios >or= 40:1 to 2.5-1) in accord with a Markovnikov orientation and an S(N)1-like transition state. Reversed regioisomer ratios were observed with 6,7-epoxygeranyl acetate (1:2.5) and cis-1,2-epoxylimonene (1:3.3 to 1:10). The tertiary azido diols from 2,3-epoxygeraniol, 2,3-epoxyfarnesol, and 2,3-epoxynerol were formed as single isomers with inversion of configuration at C3 (>or= 35-40:1 for the C(10) azido diols). The regioselectivity was affected by the presence and proximity of oxy functional groups on the epoxide substrate (OH, OAc, and OSi-tBuMe(2)), the equivalents of Et(2)AlN(3), and additives (EtOAc or EtOH). The results and trends are rationalized by consideration of the structural and stereoelectronic characteristics of proposed diethylaluminum epoxonium ion intermediates and transition states, together with the nucleophilicity of the azide donor. Six of the 3 degrees,2 degrees azidohydrins were converted to the corresponding aziridines by primary-selective silylations of four azido diols, mesylations, and reductive cyclizations with LiAlH(4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号