首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we consider global subsonic compressible flows through an infinitely long axisymmetric nozzle. The flow is governed by the steady Euler equations and has boundary conditions on the nozzle walls. Existence and uniqueness of global subsonic solution are established for an infinitely long axisymmetric nozzle, when the variation of Bernoulli's function in the upstream is sufficiently small and the mass flux of the incoming flow is less than some critical value. The results give a strictly mathematical proof to the assertion in Bers (1958) [2]: there exists a critical value of the incoming mass flux such that a global subsonic flow exists uniquely in a nozzle, provided that the incoming mass flux is less than the critical value. The existence of subsonic flow is obtained by the precisely a priori estimates for the elliptic equation of two variables. With the assumptions on the nozzle in the far fields, the asymptotic behavior can be derived by a blow-up argument for the infinitely long nozzle. Finally, we obtain the uniqueness of uniformly subsonic flow by energy estimate and derive the existence of the critical value of incoming mass flux.  相似文献   

2.
In this paper we establish the existence and uniqueness of a transonic shock for the steady flow through a general two‐dimensional nozzle with variable sections. The flow is governed by the inviscid potential equation, and is supersonic upstream, has no‐flow boundary conditions on the nozzle walls, and a given pressure at the exit of the exhaust section. The transonic shock is a free boundary dividing two regions of C flow in the nozzle. The potential equation is hyperbolic upstream where the flow is supersonic, and elliptic in the downstream subsonic region. In particular, our results show that there exists a solution to the corresponding free boundary problem such that the equation is always subsonic in the downstream region of the nozzle when the pressure in the exit of the exhaustion section is appropriately larger than that in the entry. This confirms exactly the conjecture of Courant and Friedrichs on the transonic phenomena in a nozzle [10]. Furthermore, the stability of the transonic shock is also proved when the upstream supersonic flow is a small steady perturbation for the uniform supersonic flow or the pressure at the exit has a small perturbation. The main ingredients of our analysis are a generalized hodograph transformation and multiplier methods for elliptic equation with mixed boundary conditions and corner singularities. © 2004 Wiley Periodicals, Inc.  相似文献   

3.
We characterize a class of physical boundary conditions that guarantee the existence and uniqueness of the subsonic Euler flow in a general finitely long nozzle.More precisely,by prescribing the incoming flow angle and the Bernoulli’s function at the inlet and the end pressure at the exit of the nozzle,we establish an existence and uniqueness theorem for subsonic Euler flows in a 2-D nozzle,which is also required to be adjacent to some special background solutions.Such a result can also be extended to the 3-D asymmetric case.  相似文献   

4.
We construct special solutions of the full Euler system for steady compressible flows in a convergent-divergent approximate nozzle and study the stability of the purely subsonic flows. For a given pressure p0 prescribed at the entry of the nozzle, as the pressure p1 at the exit decreases, the flow patterns in the nozzle change continuously: there appear subsonic flow, subsonic-sonic flow, transonic flow and transonic shocks. Our results indicate that, to determine a subsonic flow in a two-dimensional nozzle, if the Bernoulli constant is uniform in the flow field, then this constant should not be prescribed if the pressure, density at the entry and the pressure at the exit of the nozzle are given; if the Bernoulli constant and both the pressures at the entrance and the exit are given, the average of the density at the entrance is then totally determined.  相似文献   

5.
In this paper, under some assumptions on the flow with a low Mach number, we study the nonexistence of a global nontrivial subsonic solution in an unbounded domain Ω which is one part of a 3D ramp. The flow is assumed to be steady, isentropic and irrotational, namely, the movement of the flow is described by the potential equation. By establishing a fundamental a priori estimate on the solution of a second order linear elliptic equation in Ω with Neumann boundary conditions on Ω and Dirichlet boundary value at some point of Ω, we show that there is no global nontrivial subsonic flow with a low Mach number in such a domain Ω.  相似文献   

6.
In this paper, under the generalized conservation condition of mass flux in a unbounded domain, we are concerned with the global existence and stability of a perturbed subsonic circulatory flow for the two-dimensional steady Euler equation, which is assumed to be isentropic and irrotational. Such a problem can be reduced into a second order quasi-linear elliptic equation on the stream function in an exterior domain with a Dirichlet boundary value condition on the circular body and a stability condition at i...  相似文献   

7.
We establish the existence and uniqueness of transonic flows with a transonic shock through a two-dimensional nozzle of slowly varying cross-sections. The transonic flow is governed by the steady, full Euler equations. Given an incoming smooth flow that is close to a constant supersonic state (i.e., smooth Cauchy data) at the entrance and the subsonic condition with nearly horizontal velocity at the exit of the nozzle, we prove that there exists a transonic flow whose downstream smooth subsonic region is separated by a smooth transonic shock from the upstream supersonic flow. This problem is approached by a one-phase free boundary problem in which the transonic shock is formulated as a free boundary. The full Euler equations are decomposed into an elliptic equation and a system of transport equations for the free boundary problem. An iteration scheme is developed and its fixed point is shown to exist, which is a solution of the free boundary problem, by combining some delicate estimates for the elliptic equation and the system of transport equations with the Schauder fixed point argument. The uniqueness of transonic nozzle flows is also established by employing the coordinate transformation of Euler-Lagrange type and detailed estimates of the solutions.  相似文献   

8.
We establish boundary and interior gradient estimates, and show that no supersonic bubble appears inside of a subsonic region for transonic potential flows for both self-similar isothermal and steady problems. We establish an existence result for the self-similar isothermal problem, and improve the Hopf maximum principle to show that the flow is strictly elliptic inside of the subsonic region for the steady problem.  相似文献   

9.
In this paper, we establish the existence and stability of a 3-D transonic shock solution to the full steady compressible Euler system in a class of de Laval nozzles with a conic divergent part when a given variable axi-symmetric exit pressure lies in a suitable scope. Thus, for this class of nozzles, we have solved such a transonic shock problem in the axi-symmetric case described by Courant and Friedrichs (1948) in Section 147 of [8]: Given the appropriately large exit pressure pe(x), if the upstream flow is still supersonic behind the throat of the nozzle, then at a certain place in the diverging part of the nozzle a shock front intervenes and the gas is compressed and slowed down to subsonic speed so that the position and the strength of the shock front are automatically adjusted such that the end pressure at the exit becomes pe(x).  相似文献   

10.
We prove the stability of a Mach configuration, which occurs in shock reflection off an obstacle or shock interaction in compressible flow. The compressible flow is described by a full, steady Euler system of gas dynamics. The unperturbed Mach configuration is composed of three straight shock lines and a slip line carrying contact discontinuity. Among four regions divided by these four lines in the neighborhood of the intersection, two are supersonic regions, and other two are subsonic regions. We prove that if the constant states in the supersonic regions are slightly perturbed, then the structure of the whole configuration holds, while the other two shock fronts and the slip line, as well as the flow field in the subsonic regions, are also slightly perturbed. Such a conclusion asserts the existence and stability of the general Mach configuration in shock theory. In order to prove the result, we reduce the problem to a free boundary value problem, where two unknown shock fronts are free boundaries, while the slip line is transformed to a fixed line by a Lagrange transformation. In the region where the solution is to be determined, we have to deal with an elliptic‐hyperbolic composed system. By decoupling this system and combining the technique for both hyperbolic equations and elliptic equations, we establish the required estimates, which are crucial in the proof of the existence of a solution to the free boundary value problem. © 2005 Wiley Periodicals, Inc.  相似文献   

11.
In this paper, we establish existence of global subsonic and subsonic-sonic flows through infinitely long axially symmetric nozzles by combining variational method, various elliptic estimates and a compensated compactness method. More precisely, it is shown that there exist global subsonic flows in nozzles for incoming mass flux less than a critical value; moreover, uniformly subsonic flows always approach to uniform flows at far fields when nozzle boundaries tend to be flat at far fields, and flow angles for axially symmetric flows are uniformly bounded away from π/2; finally, when the incoming mass flux tends to the critical value, subsonic-sonic flows exist globally in nozzles in the weak sense by using angle estimate in conjunction with a compensated compactness framework.  相似文献   

12.
In this paper, we are concerned with a one-dimensional isothermal steady hydrodynamic model for semiconductors driven by boundary data. In the purely subsonic setting, we obtain the existence, uniqueness and structural stability of purely subsonic solutions. Moreover, when the boundary data range from the subsonic region to the sonic line, we further study the degenerate problem from the perspective of boundary data, and prove that there exists a unique interior subsonic solution to the degenerate problem. As a byproduct, we also establish the structural stability between purely subsonic solution and interior subsonic solution in a relatively weak sense. These results provide us with a completely new perspective to understand the singularity caused by the boundary degeneracy. A number of numerical simulations are also carried out, which confirm our theoretical results.  相似文献   

13.
In this paper, we study the global existence of steady subsonic Euler flows through infinitely long nozzles which are periodic in x1-direction with the period L. It is shown that when the variation of Bernoulli function at some given section is small and mass flux is in a suitable regime, there exists a unique global subsonic flow in the nozzle. Furthermore, the flow is also periodic in x1-direction with the period L. If, in particular, the Bernoulli function is a constant, we also get the existence of subsonic-sonic flows when the mass flux takes the critical value.  相似文献   

14.
In this paper, we focus on the two-dimensional subsonic flow problem around an infinite long ramp. The flow is assumed to be steady, isentropic and irrotational, namely, the movement of the flow is described by a second elliptic equation. By the use of a separation variable method, Strum-Liouville theorem and scaling technique, we show that a nontrivial subsonic flow around the infinite long ramp does not exist under some certain assumptions on the potential flow with a low Mach number.  相似文献   

15.
We are concerned with the global existence of entropy solutions of the two-dimensional steady Euler equations for an ideal gas, which undergoes a one-step exothermic chemical reaction under the Arrhenius-type kinetics. The reaction rate function ?(T) is assumed to have a positive lower bound. We first consider the Cauchy problem (the initial value problem), that is, seek a supersonic downstream reacting flow when the incoming flow is supersonic, and establish the global existence of entropy solutions when the total variation of the initial data is sufficiently small. Then we analyze the problem of steady supersonic, exothermically reacting Euler flow past a Lipschitz wedge, generating an additional detonation wave attached to the wedge vertex, which can be then formulated as an initial-boundary value problem. We establish the global existence of entropy solutions containing the additional detonation wave (weak or strong, determined by the wedge angle at the wedge vertex) when the total variation of both the slope of the wedge boundary and the incoming flow is suitably small. The downstream asymptotic behavior of the global solutions is also obtained.  相似文献   

16.
This is a continuation of our previous paper Du et al. (http://www.ims.cuhk.edu.hk/publications/reports/2012-06.pdf), where we have characterized a set of physical boundary conditions that ensures the existence and uniqueness of subsonic irrotational flow in a flat nozzle. In this paper, we will investigate the influence of the incoming flow angle and the geometry structure of the nozzle walls on subsonic flows in a finitely long curved nozzle. It turns out to be interesting that the incoming flow angle and the angle of inclination of nozzle walls play the same role as the end pressure for the stabilization of subsonic flows. In other words, the L 2 and L bounds of the derivative of these two quantities cannot be too large, similar as we have indicated in Du et al. (http://www.ims.cuhk.edu.hk/publications/reports/2012-06.pdf) for the end pressure. The curvatures of the nozzle walls will also play an important role in the stability of the subsonic flow.  相似文献   

17.
This paper concerns subsonic flows passing a two-dimensional duct for the steady compressible Euler system. If the Bernoulli constant is uniform in the flow field, the density at the entry and both the pressures at the entrance and the exit are given, we show that the problem is generally ill-posed; but if we give the pressure at the exit with a constant difference, then under the same other conditions as above we establish the existence of subsonic flows.  相似文献   

18.
A boundary-value problem for a non-linear second-order equation of mixed type in a cylindrical domain is considered. This problem simulates the development of small disturbances in a transonic flow of a chemical mixture in a Laval nozzle. The existence of a regular solution is proved with the help of a priori estimates for a corresponding linear problem and the contractive mapping theorem. The solution of the linear problem is constructed by the Galerkin method.  相似文献   

19.
We establish the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential compressible fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written as a second-order, nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the location of the transonic shock which divides the two regions of smooth flow, and the equation is hyperbolic in the upstream region where the smooth perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem. Our results indicate that there exists a unique solution of the free boundary problem such that the equation is always elliptic in the downstream region and the free boundary is smooth, provided that the hyperbolic phase is close to a uniform flow. We prove that the free boundary is stable under the steady perturbation of the hyperbolic phase. We also establish the existence and stability of multidimensional transonic shocks near spherical or circular transonic shocks.

  相似文献   


20.
In the present study, the turbulent gas flow dynamics in a two-dimensional convergent–divergent rocket nozzle is numerically predicted and the associated physical phenomena are investigated for various operating conditions. The nozzle is assumed to have impermeable and adiabatic walls with a flow straightener in the upstream side and is connected to a plenum surrounding the nozzle geometry and extended in the downstream direction. In this integrated component model, the inlet flow is assumed a two-dimensional, steady, compressible, turbulent and subsonic. The physics based mathematical model of the considered flow consists of conservation of mass, momentum and energy equations subject to appropriate boundary conditions as defined by the physical problem stated above. The system of the governing equations with turbulent effects is solved numerically using different turbulence models to demonstrate their numerical accuracy in predicting the characteristics of turbulent gas flow in such complex geometry. The performance of the different turbulence models adopted has been assessed by comparing the obtained results of the static wall pressure and the shock position with the available experimental and numerical data. The dimensionless shear stress at the nozzle wall and the separation point are also computed and the flow field is illustrated. The various implemented turbulence models have shown different behavior of the turbulent characteristics. However, the shear-stress transport (SST) kω model exhibits the best overall agreement with the experimental measurements. In general, the proposed numerical procedure applied in the present paper shows good capability in predicting the physical phenomena and the flow characteristics encountered in such kinds of complex turbulent flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号