首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu whiskers grown by Zn reduction of CuCl where acetylene black is added show remarkable secondary growth. As a result, whiskers change their shape into dendrites. The change is a successive process of the three following stages: (I) Thickening of whiskers. (II) Formation of helical or “bellows-like” crystals. (III) Dendritic growth where the growth axis of the branches is 〈100〉. Regardless of the marked morphological change, crystals remain single crystals of Cu and α-Cu-Zn alloys. A VLS process of morphological change where a liquid covers the surface is described.  相似文献   

2.
以白云石精制液和二氧化碳为实验原料,采用气液接触法制备碳酸钙晶须。研究了杂质离子Mg2+、NH+4和NO-3对碳酸钙晶须长径比和形貌的影响。采用扫描电镜(SEM)和X射线衍射仪(XRD)对样品的形貌和晶体结构进行表征。结果表明:NH+4浓度在0.3 mol/L,Mg2+浓度在0.05 mol/L,NO-3浓度在0.2 mol/L的情况下碳酸钙晶须的形貌和长径比最佳,其中长径比最高可以达到25以上;最后再结合晶体生长理论,阐明了碳酸钙晶须的结晶过程和生长机理。  相似文献   

3.
本文以高岭土和纳米碳黑颗粒为原料,采用碳热还原原位合成工艺制备SiC_w/Al_2O_3复相陶瓷粉体.通过研究合成温度、保温时间、原料配比以及氩气流量对合成产物的影响,借助XRD、SEM等技术手段进行测试表征,得到了合成工艺的最优参数,并探讨了碳热还原反应的机理.实验结果表明:高岭土与碳黑的摩尔比为1∶ 8,氩气流量为80 mL/min,在1500 ℃下保温2 h,可获得纯净的SiC_w和Al_2O_3复相陶瓷粉体,SiC晶须的平均直径为300 nm左右,长度大于6 μm,长径比大于20,SiC晶须表面光洁,与氧化铝颗粒呈均匀分布.碳热还原高岭土合成SiC_w/Al_2O_3,包括碳热还原SiO_2 与碳热还原莫来石两个阶段,碳化硅晶须的生成遵循气-固(V-S)生长机理.  相似文献   

4.
Investigations on solubility of CaWO4 in NaCl melts (ANIKIN ) were extended to BaWO4 and SrWO4. – Crystals of tungstates of Ca, Ba, and Sr from NaCl and KCl fluxes respectively were grown at temperatures from 950 to 650°C at cooling rates from 2 to 50 grd. h−1. Marked differences in the forms of these tungstates did not occur. Among many whiskers bipyramidal crystals grew with dendritic, sceletal and hollow transitions forms. The theoretically calculated morphological succession (PBC model) is realised by the faces of the whiskers and platelets ([110] and [100] zones). The remaining crystals – due to face specific adsorption – show other forms similar to those in nature. – Verneuil grown crystals, however, developed – free, from adsorption phenomena – {110} and {001} forms respectively.  相似文献   

5.
Ti-Al-Nb2O5系原位合成Al2O3晶须的形成机理分析   总被引:5,自引:0,他引:5  
王芬  艾桃桃 《人工晶体学报》2006,35(6):1195-1199
本文研究了以粉埋法原位合成的Al2O3晶须的形态和反应过程以及晶须的生长机理.通过物相测试表明产物由Al2O3、TiAl3、NbAl3和少量的AlN相组成,SEM结合EDS分析表明原位合成了直径小于100nm的Al2O3晶须,晶须呈棉絮状分布于基体交界处.基于铝的过剩,TiAl3相是Ti-Al界面的唯一产物.Ti与O2以反应时间短的动力学势优先形成的TinOm中间产物是Al2O3晶须生成的控制步骤.Nb2O5与铝液的双效复合催化作用,提高了晶须的生成速率;同时Al的用量因AlN的生成而减小,导致生成晶须的催化活性点减小,而扩散到每个活性点周围的TinOm及Nb2O5浓度增加,导致晶须分布密而均匀.Al2O3晶核在催化剂的作用下以螺旋位错生长形成长径比较为理想的Al2O3晶须.  相似文献   

6.
The kinetics and the mechanism of the vapor-liquid-solid (VLS) growth are discussed. Emphasis is placed on the dependence of the growth rate on the whisker diameter. It is found that the rate decreases abruptly for submicron diameters and vanishes at some critical diameter dc ? 0,1 μm according to the Gibbs-Thomson effect. A new method for simultaneous determination of kinetic coefficients and of supersaturations has been developed. The method can be used to measure the coefficients of some materials as well as the temperature dependence of the coefficient for silicon and the activation energy of the process. From the dependence of supersaturation on the diameter we conclude that whiskers grow by a poly-nuclear mechanism. The periodic instability of the diameter is discussed and the rate-determining step is analysed. We conclude that phenomena on the liquid-solid interface are the decisive ones. In determining the role of liquid phase in vapor growth we measured the “liquid phase effectivity coefficient” as a function of crystallization condition; the coefficient typically was about 102?103. It is stressed that the liquid phase reduces the activation energy both on vapor-liquid interfaces (for chemical reactions) and on liquid-solid interfaces (for nucleation). The liquid phase ensures growth rates as high as 1 cm/sec, provided there are no barriers between the interfaces. The growth mechanism of the side faces was studied, and it was observed that the faces grow mainly by a chain mechanism rather than by two-dimensional nucleation. In work on surface diffusion in the VLS whiskers growth by CVD, we found that the whiskers grow mainly by direct deposition rather than by diffusion on the side faces. It is concluded that the VLS mechanism is important also for the vapor growth of platelets, films, and bulk crystals.  相似文献   

7.
The growth of filamentary crystals (whiskers) on a single-crystal substrate through the vapour-liquid-solid mechanism is described. The possibility of fabricating oriented systems of whiskers on the basis of this mechanism of crystal growth is noted. A phenomenon that is important for nanotechnology is noted: the existence of a critical diameter of whiskers, below which they are not formed. The phenomenon of radial periodic instability, which is characteristic of nanowhiskers, is described and the ways of its elimination are shown. The possibility of transforming whiskers into single-crystal tips and the growth of crystalline diamond particles at their apices are noted as important for practice. Possible applications of systems of whiskers and tips are described briefly. Particular attention is paid to the latest direction in whisker technology—fabrication of single-crystal whisker probes for atomic force microscopy.  相似文献   

8.
以处理后的脱硫石膏为原料,在H2SO4-H2O体系中以Cu(NO3)2为晶形控制剂采用水热法制备脱硫石膏晶须,探讨了Cu(NO3)2对脱硫石膏晶须生长的影响机理。结果表明:Cu(NO3)2对脱硫石膏有明显促溶作用,其中Cu2+可减小溶液中各离子的活度系数,使溶液中的Ca2+浓度增大。NO-3通过静电作用在Ca2+周围聚集并对SO2-4产生屏蔽作用,导致脱硫石膏继续溶解并使Ca2+和SO2-4的浓度处于相对稳定状态,有利于半水脱硫石膏晶体的形核与生长。此外,Cu2+还可在晶须的生长过程中选择性吸附在晶须表面,生成CuSO4,促进了脱硫石膏的结晶生长,最终在Cu(NO3)2用量为2.0%(质量分数)时制备的脱硫石膏晶须长径比约为73。  相似文献   

9.
The paper deals with the effect of the fundamental technological parameters on the mass increment of α-Al2O3 sapphire whiskers grown in a high-temperature resistance furnace by hydrogen reduction. Results of X-ray topographical studies of the defect structure of needle- and plate-like whiskers are presented. The directions of growth and the tensile strength of the grown whiskers are determined.  相似文献   

10.
The oriented growth of GaAs, GaP, InAs and GaInAs whiskers on the same (GaAs, GaP) or different (InAs/GaAs, GaInAs/GaAs) substrates was studied. A detailed morphological study of GaAs whiskers on polar A(III), B(111 ) and non-polar (001), (011) substrates was performed. The growth conditions for ordered (perpendicular to substrate) growth on the A(111) and B(111 ) faces were determined. There were found discrete spectra of whisker systems on all substrates with the preferential growth of “arsenic” B{111 } faces. The dependence of the growth rate on the whisker diameter is typical for the vapour-liquid-solid (VLS) mechanism and is used for the determination of kinetic coefficients for polar faces. There was observed a periodic instability in growth of InAs and GaInAs whiskers.  相似文献   

11.
On the basis of micro- and macro-morphological studies the mechanism responsible for the growth of Se–Te whiskers has been suggested. It has been shown that Sc–Te whiskers grow by layer growth mechanism in which screw dislocation is not the source of step but the growth proceeds by two-dimensional nucleation. This has been supported by the supersaturation data. The plausible mechanism for the growth of hollow whiskers has also been suggested.  相似文献   

12.
The growth of whiskers from silver amalgam is investigated; The whiskers grew in aqueous solution on mercury surface by means of one kind of internal electrolysis. They possess the shape of hexagonal capillary tubes filled with mercury. A potentiostatic method has been developed for measuring supersaturation, resp. overvoltage during the whisker growth. The same method permitted the experimentator lightly to rule the whisker growth process.  相似文献   

13.
以Mgcl2和NaOH为原料,采用直接沉淀法制备氢氧化镁晶须.研究了添加不同晶控剂对氢氧化镁晶须生成的影响,同时对添加硬脂酸锌制备氢氧化镁晶须的工艺进行研究.采用扫描电子显微镜和粒度分析仪对产品进行表征.结果表明,硬脂酸锌和氯化铁对氢氧化镁晶须的生成具有导晶作用;所得产品为长径比10.7的氢氧化镁晶须.采用负离子配位多面体生长基元理论可以有效地解释氢氧化镁晶须的生成.  相似文献   

14.
The effect of crystal surface roughness on impurity adsorption was investigated in a fluidized bed crystallizer and in a batch crystallizer. The crystallisation of sucrose in pure and impure systems was the study subject. Calcium chloride was utilized as impurity in this work. The results show that the impurity adsorption is growth rate dependent and is strongly influenced by the crystal surface properties. Crystals with high surface roughness have lower impurity adsorption. Based on experimental evidences, a new theoretical model is proposed to quantify the surface roughness influence on the impurity adsorption, allowing, by operating at the more adequate supersaturation, to control the impurity transfer into crystals. The used impurity does not have a significant influence on the growth rates at the studied temperatures. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The influence of impurities on the crystallization kinetics of NaCl was investigated in a fluidized bed crystallizer. The growth and dissolution rates were related to the supersaturation and impurity concentrations. The effect of different impurities on the growth rate of NaCl crystals can be divided into thermodynamic effects where the impurities influence the solubility and kinetic effects where the impurities will suppress the growth rate compared to the pure NaCl. A mathematical model describing crystal growth rates from aqueous solution as a function of impurity concentration is presented. The model explains impurity concentration effects on the crystal growth rate in terms of an impurity effectiveness factor and a Langmuir adsorption isotherm for the impurity.  相似文献   

16.
采用第一性原理与蒙特卡罗方法研究TiCl4气体分子填充扶手椅型碳纳米管的吸附性能与光电性质,结果表明:扶手椅型碳纳米管对TiCl4气体分子具有较强的物理吸附作用,研究构型的吸附能绝对值均超过0.9 eV,是TiCl4气体分子理想的填充载体,随碳纳米管管径的增大,吸附能先增大后减小;温度升高不利于TiCl4气体分子吸附,气体逸度增加有利于吸附,TiCl4气体分子填充扶手椅型碳纳米管宜将温度维持在TiCl4沸点附近,并增加气体的压力;TiCl4的吸附对碳纳米管的电子结构进行了调控,使费米能级附近的态密度显著提高,使复合物的导电性增强,对赝能隙的大小没有明显影响,峰位仍由碳纳米管自身决定;TiCl4的吸附对体系的光学参数影响有限,在增强复合物导电性的同时未使可见光区域吸收率、反射率、损失函数数值增大,可有效提升透明导电薄膜的性能。  相似文献   

17.
18.
A small quantity of cuprous iodide (less than 30 mg) was reduced by hydrogen at 650 or 700°C for various periods of time (15 sec to 4 min) and quenched to interrupt whisker growth. This was done in order to examine the nature of the growth of copper whiskers. Scanning electron microscopic observation and X-ray microanalysis revealed that almost all the whiskers quenched after the growth for 30 sec or less had cuprous iodide droplets at their tips and also the lateral surfaces were covered by thin cuprous iodide layers. The manner in which the copper crystals grow is similar to growth by the droplet mechanism or by the VLS mechanism in that the nutrient is supplied by a liquid drop on the tip of the whisker. Whiskers thicken during and after the growth in length. The whiskers quenched after the growth for 1 min or more had well-developed lateral surfaces and did not have the droplets at the tips. Preferential condensation and reduction were found to occur at the whisker edges. Based on the observed facts, a growth mechanism is presented. Secondary whisker growth on the whisker tips was also investigated.  相似文献   

19.
对脱硫石膏原料进行机械力活化,然后采用降温重结晶法制备出硫酸钙晶须.借助扫描电镜、图像粒度分析仪和相关软件进行表征,并初步讨论了机械力活化对晶须成核和生长过程的影响.结果表明:经过机械力活化的脱硫石膏可以制备有较大长径比的硫酸钙晶须.在水浴反应温度为75℃,硫酸浓度为2.5 mol/L,机械力活化时间为3.5 h,浆料浓度为2;的条件下,制备的硫酸钙晶须平均长径比为150,平均直径为2.1μm.  相似文献   

20.
A process for the utilization of wasted silica fume is proposed in this work. Silicon carbide (SiC) whiskers several tens of micrometers in length and with a bamboo‐like morphology have been successfully synthesized by a carbothermal reduction process using purified silica fume as the silicon source. The morphology and structure of SiC whiskers were investigated by X‐ray diffraction, Raman spectroscopy, scanning electron microscopy, and high‐resolution transmission electron microscopy. Studies found that the as‐synthesized whiskers were grown as single‐crystalline β‐SiC along the (111) growth direction. The whiskers consisted of hexagonal stems randomly decorated with larger‐diameter knots along their whole length. On the basis of the characterization results, a vapor–solid process was discussed as a possible growth mechanism of the β‐SiC whiskers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号