首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ag2S forms with GeS2 stable glasses over a wide range of compositions (0–55% Ag2S mol%). In the same system, more complex glasses obtained by dissolving silver iodide have been synthesized with up to 50 mol% AgI.Raman spectra are presented and a vibrational assignment in terms of bridging and non-bridging sulfur has been made. The electrical conductivity of these glasses has been measured over a temperature range (?50°C? + 50°C) and for various compositions by the complex impedance diagram method. At 25°C, the conductivity reached a maximum value of 6 × 10?3 Ω?1 cm?1. Whatever the glass used, the same limit value of conductivity (σ ? 10 su?2 Ω?1cm?1) and activation energy (Eσ ? 0.25 eV) are obtained for the highest content of silver iodide. A conduction mechanism is proposed.  相似文献   

2.
The behavior of the phonon-assisted energy transfer between trivalent rare-earth ions in glasses was investigated. The ions Eu3+ and Tb3+ as energy donors and Yb3+ as acceptor were selected. The energy gap between the levels of the donor and acceptor was estimated on the basis of the energy diagram of each ion determined from absorption and emission spectra. The probability for the transfers of (Eu, 5D0-7F6): (Yb, 2F72-2F52) and (Tb, 5D4-7F0): (Yb, 2F72-2F52) in silicate, borosilicate, phosphate and germanate glasses was measured in the temperature range of liquid-nitrogen temperature - 650K. The probability of transfer was the smallest in phosphate glass and B2O3 had the effect of increasing it. In germanate glass the dependence of the probability of the energy gap was relatively weak. These results were correlated to the difference in the phonon energy and the strength of the electron-lattice coupling in each glass.  相似文献   

3.
The kinetics of crystal nucleation in Na2O · 2SiO2 have been determined over the range of undercoolings between 173 and 373°C. The plot of log(Iv?) versus 1ΔT2rT3r is a straight line of negative slope over some 13 orders of magnitude in Iv. The slope of this relation indicates a nucleation barrier of about 45 kT at ΔTr = 0.2, and the intercept at 1ΔT2rT3r = 0 is 1026 cm-3 sec-1. poise. The results are in good agreement with predictions of the theory of homogeneous nucleation, even in the pre-exponential factor.  相似文献   

4.
The retarded elasticity was investigated for B2O3GeO2 glasses having network structure in the glass transition range by using a compressive method. The compliance (J) determined at the final stage of each measurement displayed a maximum for roughly constant viscosity (η ? 1014 P) in all the B2O3GeO2 glasses and was simulated by the same equation applied for AsS glasses reported in a previous paper [1].
J=(1?k2keta;Gketa;)[?1(k1keta;)+?2(nk1keta;)]
, where K1, k2, ?1, ?2and n are parameters and ηG is the viscosity related to the retarded elasticity. The terms (k1/η) and (nk1/η) are assumed to be equal to one for all their values exceeding one. For B2O3GeO2 glasses, the deformation due to the retarded elasticity could be alloted to two structural elements: the first element related to the term ?1(k1/η) and the second element related to the term ?2(nk1/η). The values of ?1 showed almost no variance with the glass composition, but ?2 had a minimum at the composition of 50 mol% GeO2. These data suggest that the contribution of the second element is the smallest at B2O3/GeO2 = 1. The values of k2 were close to that of As2S3 glass having the network structure. k1 and n (or nk1) were almost constant regardless of the composition, respectively. These data suggest that the inhibition due to the viscosity starts at an approximately constant viscosity in B2O3GeO2 glasses.  相似文献   

5.
A new method to determine ac conductivity of amorphous Ge using Al-amorphous Ge–SiO2–P+Si tunnel junctions is presented. Frequency dependence of ac conductivity is found to satisfy the power law in the frequency range between 1 and 50 kHz and the density of localized states at the Fermi level is estimated to be ~ 1.7 × 1020 cm?3 eV?1 which decreases to ~ 4.5 × 1019 cm?3 eV?1 after annealing at 175°C.Temperature dependence of tunneling conductance of Al-amorphous Ge–SiO2–P+Si junctions is appreciable only near zero bias. Zero bias conductance of the junctions obeys the T?14 law of Mott; the density of localized states obtained from the T?14 law is one order of magnitude smaller than that obtained by ac conductivity measurements, being insensitive to annealing. This behavior of the tunnel junctions differes in many respects from those of Al–Al2O3-amorphous Ge tunnel juntions.  相似文献   

6.
This paper describes a method of stirring a liquid during crystal growth in which each point on the growth face moves round a circle of radius b. If the face has a radius a and completes n revolutions per second, then the stirring is roughly equivalent to rotating the disc about a single axis at a rate 2πc2b2na2 where c is a constant (c ∽ 2) but the system behaves as if only the liquid up to a distance (2vn)12 from the face is stirred. Uniform stirring occurs over the whole face except for an annulus of width 2b at the periphery. The necessary design criteria are discussed and a simple dynamically balanced apparatus and the results obtained with it whilst growing iron garnet films are described.  相似文献   

7.
The planar and transverse electrical resistivity of amorphous carbon (a-C) films getter-sputtered at low temperature (77–95 K) is well-fitted by the expression ? = ?0exp(T0/T)14 The exponent T0 being approximately the same in both cases (≈ 7 × 107 K) suggests that the amorphous films are isotropic. Films thinner than 600 Å display a two-dimensional hopping conductivity from which one deduces a density of states N(EF) at the Fermi level of 1018 eV?1 cm?3 and a radius of the localized wave functions (a) of 12 Å. Tunneling experiments and optical absorption measurements are consistent with a pseudogap of approximately 0.8 eV. Electron diffraction experiments indicate that a-C films consist of a mixture of diamond and graphite bonds; this fact taken in the light of the other experiments would suggest that the graphite bonds act as the localized conduction states.  相似文献   

8.
The deep trapping levels in a-selenium have been measured by the electric field stimulated current method. It is found that the enhancement of detrapping from the trapping levels is proportional to EXP (α/kTxE12) where α/kT=0.012 (m/V)12) and E is electric field. The distribution of trapping time is also obtained.  相似文献   

9.
The solarization mechanism in a glass containing both Ce3+ and As5+, 16Na2O·11CaO·73SiO2:0.15AsOx·0.015CeOx (in mol.%), is newly proposed by elucidating the valence and coordination structure of arsenic after the photochemical reaction, the mechanism being traditionally expressed as
2Ce3+ + As5+hv 2Ce4+ + As3+
ESR hyperfine quartets due to an As4+ ranging from 0.1 to 0.5 T built up on UV-irradiation and their line shape varied with the duration of the irradiation. The line shape analysis of the ESR spectra employing a computer simulation technique has led to the following conclusions; (1) As5+ is reduced to As4+ in the solarization process. (2) The geometry around the As4+ in the solarized glass is tetrahedral during the early stage and trigonal-pyramidal during the latter stage of the reaction.  相似文献   

10.
Measurements of dc electrical conductivity and photoconductivity of various glassy compositions (x = 0.1?0.625) in (As2S3)1?x(PbS)x have been made. Experimental results of the temperature dependence of dc conductivity from room temperature to 200°C (which includes the glass transition temperature) are reported. All the compositions exhibit intrinsic conduction in the measured temperature range. Thermal activation energy, glass transition temperature and σ0 for the compositions studied, were determined from the experimental data. The low value of σ0 (10?10?2 Ω?1cm?1) in these semiconducting glasses is attributed to the greater participation of localized states in the conduction process.In the measurements of photoconductivity, the variation of photocurrent with temperature, photon energy, light intensity and electric field is observed. The recombination model has been involved to explain the results of photoconductivity. Both electrical and photoconductivity data support the presence of higher density of localized states in the x = 0.1 composition than in others.  相似文献   

11.
This paper analyses the electrical properties of glassy alloys of AsxGe10Te90?x, while reporting the conductivity and dielectric constant of As5Ge10Te85 and As15Ge10Te75 compositions in the temperature range 77–383 K and the frequency range from dc to 5 MHz. The dc conductivity has been shown to be of the form
σdc=σ01exp(?δE1/kT) + σ02exp(?δE2/kT
The ratio σ01/σ02 is of the order of 106. ΔE1, the higher temperature activation energy, is dependent on the composition, while ΔE2, the lower temperature activation energy, is less dependent on the composition. The dielectric constant has been found to be independent of temperature and frequency up to about 253 K. However, at higher temperatures, it becomes activated and proportional to log ω.Some common features of AsxGe10Te90?x are a kink in dc conductivity, a ω0.8 relationship for ac conductivity, no evidence of variable-range hopping at low temperatures, field-dependent conductivity and memory switching. The data can be interpreted in terms of the dangling-bond theory of Mott and his collaborators. A high density of states of the order of 1020eV?1 cm?3 near the Fermi level may be expected.  相似文献   

12.
The Laplace-Young capillary equation for the shape of an axisymmetric liquid-vapor interface has been solved numerically for boundary conditions relevant to a model of the floating zone process. The stability of these solutions with respect to axisymmetric and asymmetric perturbations which conserve volume has been determined via the conjugate point criterion of the calculus of variations. The liquid zone shape is governed by five dimensionless parameters: RmRf, LRf, VφR2fL, ? = ρgR2fγ, and ?R= ρΩ2R3fγ, where Rm and Rf are the radii of the melting and freezing solids, respectively, L is zone length , V is the zone volume, ρ is the density difference between liquid vapor, g is the gravitational acceleration, γ is the liquid-vapor surface tension, and Ω is the constant angular velocity of the uniformly rotating zone. For growth of constant diameter crystals, the angle øf, measured between the meniscus and the growth axis at the freezing interface, is constant. For Rm = Rf, ?R = 0, and øf = 0, the maxi mum value of ? for which a stable liquid zone exists has been calculated for various values of L/Rf. For some values of ?, two different stable liquid zones with different volumes (but all other parameters identical) give the same value of øf.  相似文献   

13.
The motion of interacting parallel monatomic 〈10〉 steps on free-evaporating (100) NaCl cleavage surfaces has been investigated electron-microscopically and simulated numerically in the temperature range from 260 to 320°C. To make visible the advance of steps due to annealing a special matched-face decoration technique was employed. By comparison of simple step configurations before and after their isothermal activation the process-determining parameters could be obtained: velocity of isolated monatomic straight steps isol(T=1.25 × 1023exp(-2.5eVkT) A?min), surface self-diffusion length (xs(T)=5.5 exp(0.31 eV;kT) A?), and retardation factor (ζ(T)=1). Moreover, any symmetry in diffusion fields at a straight step was found to be negligible in the present case. By means of these parameters of motion it was possible to stimulate mutual interactions of steps observed within finite trains of parallel 〈10〉 steps. The confrontation of experimental and numerical results has shown that the applied step model which bases on the extended BCF theory describes the propagation of monatomic straight steps on evaporating NaCl cleavage surfaces in detail.  相似文献   

14.
Electrical and optical properties of semiconducting SiAsTe glasses have been investigated. Compositional dependences of the properties in the SixAsyTez system are examined as a function of atomic percentage x (or y, z) of one element with parameters of constant atomic ratio y/z (or x/z, x/y) of the other two elements. A pre-exponential factor σ0 in the dc conductivity formula is estimated to be (2.1 ± 0.6) × 104 (Ω · cm)?1, inependently of the compositions. A systematic relationship between the compositional changes in the electrical gap Eg(el) and optical gap Eg(op) has been found. The energy gaps increase linearly with increasing Si content and decreasing Te content, but are almost independent of As content. The relation between Eg(el) and Eg(op) is expressed by Eg(el) = 1.60 Eg(op) ? 0.15 in eV. On the other hand, the optical absorption coefficient α(Ω) near the band edge follows the empirical formula, α(Ω) = α0 exp (h?Ω/Es). The experimentally determined factor Es increases linearly with Eg(op) and is closely related to the energy difference between the two gaps. A tentative model to explain these experimental results is proposed by taking into account of the effect of the potential fluctuations in such disordered materials.  相似文献   

15.
Electrical conductivity σ0 and electric field relaxation measurements have been carried out as a function of thermal history for two alkali silicate glasses, Na2O3SiO2 and K2O3SiO2. Specimens of each glass with three different thermal histories, two of the anneal-and-quench type and one of the rate-cool type, were studied. The average structural or fictive temperature Tf of each of the specimens was characterized by measuring their indices of refraction. Effects of thermal history on σ0 and its activation enthalpy Hσ1 were in accord with results of previous investigators. That is, for a given type of thermal history σ0 was lower and Hσ1 higher the lower Tf. In addition it was found that for two specimens with the same Tf or index of refraction but different thermal histories the rate-cooled specimen exhibited a lower conductivity than the annealed-and-quenched specimen, in accord with the results of Ritland. The distribution of relaxation times τσ for decay of the electric field due to ionic migration was found to be due primarily to a distribution in the pre-exponential term ln τσ1 in the equation ln τσ = ln τσ1 + H1/RT; the distribution in H1 was extremely narrow. Differences in thermal history caused small differences in the distribution of τσ, but no difference in the average activation enthalpy 〈H1 for τσ. From this result it appeared that the dependence of the conductivity activation enthalpy Hσ1 on thermal history was due to the effect of thermal history on the temperature dependence of the distribution in τσ.  相似文献   

16.
Silicate glasses with the composition (in per cent by weight) of 74 SiO2, 20 Na2O, 6 CaO and different Fe2O3 concentrations were subjected to X-ray irradiation and the behaviour of the iron as well as that of the radiation-induced defects was investigated systematically using ESR. The defects which are abundant in iron-free glasses (they produce a strong signal at g = 2.01) and which lead to colouring of the glass, decrease with rising Fe2O3 concentration and cease to exist at 2% Fe2O3. These glasses are radiation-resistant.Because of the X-rays a valence change of the iron takes place. This process is initiated by a radiation-induced redox interaction between Fe3+ and Fe2+ according to:
Fe2++Fe3+hvFe3+1+Fe2+1
Because of the different structures (coordinations) of Fe2+ and Fe3+ the process leads to a decrease in Fe3+ at g = 4.2 in glasses with low Fe2O3 concentration. This decrease is reduced with increasing concentration of Fe2O3.  相似文献   

17.
Dc conductivity measurements have been made between 90 and 520 K on three bulk samples of V2O5P2O5 glass. Heat treatment is found to result in a reduction of the activation energy at a given temperature and this is most noticeable at low temperatures. The behaviour at low temperatures can be described using Mott's variable range hopping arguments, and at high temperatures by non-adiabatic small polaron hopping between nearest neighbours. At intermediate temperatures a simple model is used in which excitations by optical and acoustic phonons are considered to make independent contributions to the jump frequency. Mott's theory is extended to the polaron case for T>14? and is shown to be in good agreement with results. Values for rp(~2.8 A?) the polaron radius and α(~3.5 A??1) the electron decay constant are shown to be consistent with the model for small polarons. A method is suggested for obtaining α and N(EF) from the ac conductivity and the slope of 1nσ versus 1T14 at low temperatures. Values of N(E) are obtained which correlate with those obtained by the previous analysis. This implies that the disorder energy separating adjacent sites Δ0 is large (~0.4 eV) in these materials.  相似文献   

18.
Measurements of the conductivity (σ), thermoelectric power (S) and thermal conductivity (κ) of amorphous boron are made over wide temperature ranges (T = 77–850 K for σ, T = 300–850 K for S and T = 80–1100 K for κ). The room temperature spectral dependencies of the reflection (R) and absorption (α) coefficients are determined for the wavelength intervals 2–25 μm and 1.3–25 μm respectively. The I–V characteristics are also studied and shown to be consistent with the Poole-Frenkel law.The value obtained for the thermal energy gap of amorphous boron (1.3 eV) is slightly smaller than that of crystal ß-rhombohedral boron (1.4 eV). The temperature dependence of the electrical conductivity can be satisfactorily described by the Mott law ln σ ≈ ?(T0/T)14, where T0 ? 108K. This gives an estimate, N ≈ 1018 cm?3, for the concentration of trapping levels responsible for the hopping conduction. The value ?0 ? 9 is found from the spectral dependence of R while α has Urbach-like character ? α ≈ exp (h? ω/Δ), where Δ ? 0.19 eV.A comparison is made between amorphous boron and crystalline ß-rhombohedral boron. Because of the very complex crystal structure and the large dimensions of the unit cell of ß-boron, some of its physical properties could be qualitatively described on the basis of the so-called ‘amorphous concept’.  相似文献   

19.
Spinodal decomposition during continuous cooling of the PbOB2O3Al2O3 quasi-binary glass system was analysed by numerical integration of Cook's differential equation (which includes the contribution of random density fluctuations) for small angle X-ray scattering (SAXS) intensity. The SAXS curves derived from the calculations have a wide range of k-Fourier components (0 < k < kc) for which a positive amplification factor occurs and they show a “crossover” point at kc = 0.155 A??1. The wavenumber which receives maximal amplification, km, increases with the cooling rate, Q, as Q1n, with n = 10.9. This Q dependence of km is similar to that predicted by Huston et al., however our results show a higher value of n. The dependence on Q and km of the SAXS intensity I(km) was also deduced. The measurements of SAXS curves were performed on glass samples prepared by the splat-cooling technique. Because of the difficulties which arise in the determination of the cooling rate of the samples, the only experimental results that could be compared with the theory are the km dependence of I and the value of kc. These results are satisfactorily understood in terms of the present analysis.  相似文献   

20.
The kinetics of K+ ? Na+ exchange in two glass systems, 20Na2O·(60?x)B2O3· (20 + x)Si2 (where x = 0, 15, 30 and 45 mol%) and Na2O·3SiO2, were studied as a function of glass composition, salt bath composition, exchange temperature and time The distribution of K in the glass specimens after exchange in molten KNO3 was determined with an electron probe. Stresses in these speciments were measured photoelastically. The interdiffusion coefficient D for ion exchange was calculated as a function of local composition in the glass using the Boltzmann-Matano method. The strong variation of D in any particular glass approximated that predicted by a mixed alkali model (as advanced by Lacharme), where the glass in the ion-exchanged region approximates a composite of stacked layers of mixed alkali glasses with a gradually varying alkali ratio. The small discrepancy between the experiment and the mixed alkali model was partly, but not fully, reconciled by considering the strains in the glasses. The observation which remained unexplained was that the calculated stress profiles did not show perfect agreement, both in magnitude and in shape, with the experimentally measured stress profiles. It appeared that the kinetics of ion exchange in the glasses were also influenced by a network relaxation process which may have occurred well below the glass transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号