首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two versions of selenium(IV) preconcentration and determination on a mercury film electrode (MFE) by cathode stripping voltammetry with an automated solution replacement system without circuit disconnection are compared. In one version, selenium(IV) is preconcentrated together with copper(II); in the other, selenium is preconcentrated on a copper-modified MFE. Under optimum conditions (against the 0.1 M HCl background at selenium electrolysis potentials from ?350 to ?400 mV and electrolysis times of 180–300 s), calibration curves for both selenium preconcentration versions are linear over the concentration ranges from 2.5 to 20 μg/L and from 50 to 250 mg/L. The selenium peak heights are well reproduced in both cases (in the range of the concentrations studied, S r lie in the range from 0.02 to 0.05). Sequential copper and selenium preconcentration is more convenient: there is no need to add copper to each analyzed solution, and it is possible to optimize selenium preconcentration parameters (solution composition, electrolysis potential, and electrolysis time) regardless of the copper preconcentration parameters.  相似文献   

2.
The application of an in situ gold-plated glassy carbon disk electrode to the determination of selenium(IV) by anodic stripping voltammetry is described. A single anodic stripping peak is obtained for solutions containing less than 1 × 10-6 M Se(IV). The minimum concentration detected was 2 × 10-9 M Se(IV). The determination of selenium in NBS SRM 1577 (Bovine Liver) by anodic stripping voltammetry with an in situ goldplated rotating glassy carbon electrode yielded a value of 1.14 ± 0.07 μg Se g-1 compared with a certificate value of 1.1 ± 0.1 μg Se g-1.  相似文献   

3.
The well-known method for the determination of selenium(IV), which is based on the cathodic stripping voltammetry of copper(I) selenide, has been adapted for application at the thin-film mercury electrode on glassy carbon (TFME). Insufficient reproducibility and sensitivity have been overcome by using a 0.1 mol/L HClO4 electrolyte solution containing 0.02 mol/L thiocyanate ions. Thiocyanate ions have been found to increase the peak height of the selenium response and shift it to more positive potentials. This behaviour is explained by an adsorption of SCN at the interface glassy carbon/Cu2Se and its action as an electron transfer catalyst between glassy carbon and copper(I) selenide. A 3σ-detection limit of 75 ng/L Se(IV) has been achieved. The relative standard deviation is 5.2% at 5 μg/L selenium(IV). The influence of cadmium(II), arsenic(III), zinc(II), iron(III) and lead(II) ions on the selenium response has been studied. In case of lead ions, a new signal occurred at more negative potentials than the reduction of Cu2Se. This signal, which is probably due to the reduction of PbSe, can also be used for the determination of selenium(IV).  相似文献   

4.
Selenium is an important element for human health, and it is present in many natural drinks and foods. Present study described a new method using dispersive liquid–liquid microextraction prior to high‐performance liquid chromatography with a UV variable wavelength detector for the determination of the total selenium, Se(IV), Se(VI), and total organoselenium in tea samples. In the procedure, 2,3‐diaminonaphthalene was used as the chelating reagent, 400 μL acetonitrile was used as the disperser solvent and 60 μL chlorobenzene was used as the extraction solvent. The complex of Se(IV) and 2,3‐diaminonaphthalene in the final extracted phase was analyzed by high‐performance liquid chromatography. The factors influencing the derivatization and microextraction were investigated. Under the optimal conditions, the limit of detection was 0.11 μg/L for Se(IV) and the linearity range was in the range of 0.5–40 μg/L. This method was successfully applied to the determination of selenium in four tea samples with spiked recoveries ranging from 91.3 to 100%.  相似文献   

5.
A procedure was proposed for the determination of selenium(IV) by stripping voltammetry on a mercury-film electrode at an electrolysis potential of +0.4 V versus the saturated silver–silver chloride reference electrode in a 1 M H2SO4 solution. The current of the cathodic peak is a linear function of the selenium(IV) concentration in the range from 5 × 10–3 to 3 × 10–1 mg/L (6.3 × 10–8 to 3.8 × 10–6 M) at a time of electrolysis of 30 s (t el). The detection limit for selenium is 1 × 10–4 mg/L (1.3 × 10–9 M) at t el = 300 s. It was shown that selenium(IV) can be determined in the presence of 10 mg/L Zn(II), 1 mg/L Cd(II), 0.5 mg/L Pb(II), and 0.2 mg/L Cu(II). A procedure for the determination of selenium in natural, mineral, and potable water was proposed.  相似文献   

6.
A simple and sensitive catalytic spectrophotometric method was developed for the determination of trace amounts of selenium. The method is based on the catalytic effect of selenium in form Se(IV) on the reduction of Maxilon Blue-SG by sodium sulfide. Indicator reaction is followed spectrophotometrically by measuring the absorbance change at λmax=654 nm and constant temperature (30.0±0.1 °C) by fixed time method. Selenium could quantitatively be determined in the range 0.004-0.200 μg ml−1 Se(IV) with a detection limit of 0.205 ng ml−1 Se(IV). All of the variables that affected the reaction rate were investigated and established optimum conditions to give maximum sensitivity. The R.S.D.s of the method (N=12) for the Se(IV) concentrations of 0.004, 0.016, 0.040 and 0.160 μg ml−1 are between 2.27 and 0.32%, respectively, and depended on Se(IV) concentration. The interference effect of various anion and cations on the Se(IV) determination was also fully studied. The selectivity of catalytic reaction was greatly improved with the use of the strong cation exchange resin. The developed kinetic-catalytic reaction was applied to the determination of selenium in real samples as Antioxidant-S, Selsun (which is a healthcare product for the treatment of dandruff) and analytical grade sodium metabisulfite, and in spring water samples without any pre-concentration. The acceptable recoveries were obtained by the method for appropriate standard Se(IV) additions. The method is simple, practical and suitable for using in small laboratories owing to its precision, sensitivity and relative selectivity.  相似文献   

7.
A method for the voltammetric determination of vanadium using a carbon paste electrode (CPE) was described. The new procedure is based on the adsorptive accumulation of the V(V)‐alizarin red S(ARS) complex onto the surface of the CPE, followed by the electrochemical reduction of adsorbed species. The optimal experimental conditions include the use of 0.10 mol/L acetate buffer (pH 5.1), 1.0×10?5 mol/L ARS, an accumulation potential of ?0.10 V (versus SCE), an accumulation time of 2 min, a scan rate of 200 mV/s and a second‐order derivative linear scan mode. The reduction peak for the complex appears at ?0.52 V. The peak current is proportional to the concentration of V(V) over the range of 0.10–15.0 μg/L, and the detection limit is 0.04 μg/L for a 2 min adsorption time. The relative standard deviations(n=8) for 2.0 and 0.50 μg/L V(V) are 3.1 and 4.7%, respectively. The proposed method was applied to the determination of vanadium in water samples.  相似文献   

8.
Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe‐Mn, Fe‐Ni, Fe‐Co, and Fe‐Mn‐Co‐Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100–250 nm. The sorption efficiency was investigated by a micro‐solid‐phase extraction setup in online combination with high‐performance liquid chromatography for the determination of naproxen and clobetasol. All the prepared composites exhibited comparable efficiencies for the desired analytes and the type of metal showed insignificant effect. For the selected composite with Fe‐Mn, the linearity of the analytes was in the range of 1–1000 μg/L and the limit of detection values were found to be 2 and 0.3 μg/L for naproxen and clobetasol, respectively. The developed method was extended to the analysis of urine and blood plasma samples and acceptable relative standard deviations were obtained at two concentration levels.  相似文献   

9.
《Electroanalysis》2006,18(10):976-980
A sensitive and selective procedure for the determination of trace tin at a carbon paste electrode was described. Each measurement cycle consisted of three steps: accumulation, reduction and stripping. The tin complex with bromopyrogallol red (BPR) was accumulated on the electrode surface in 0.10 mol/L acetate buffer (pH 4.5). After electrochemical reduction of Sn(II) had been carried out, the reoxidation wave of Sn(0) appeared at ?0.69 V (vs. SCE) on scanning the potential in the positive direction in 4.0 mol/L HCl. For a preconcentration time of 2 min, the detection limit was 0.06 μg/L (5×10?10 mol/L ) and the linear range was from 0.1 to 50 μg/L. The proposed method was applied to the determination of tin in canned food and waste water samples with satisfactory results.  相似文献   

10.
The well-known method for the determination of selenium(IV), which is based on the cathodic stripping voltammetry of copper(I) selenide, has been adapted for application at the thin-film mercury electrode on glassy carbon (TFME). Insufficient reproducibility and sensitivity have been overcome by using a 0.1 mol/L HClO4 electrolyte solution containing 0.02 mol/L thiocyanate ions. Thiocyanate ions have been found to increase the peak height of the selenium response and shift it to more positive potentials. This behaviour is explained by an adsorption of SCN at the interface glassy carbon/Cu2Se and its action as an electron transfer catalyst between glassy carbon and copper(I) selenide. A 3σ-detection limit of 75 ng/L Se(IV) has been achieved. The relative standard deviation is 5.2% at 5 μg/L selenium(IV). The influence of cadmium(II), arsenic(III), zinc(II), iron(III) and lead(II) ions on the selenium response has been studied. In case of lead ions, a new signal occurred at more negative potentials than the reduction of Cu2Se. This signal, which is probably due to the reduction of PbSe, can also be used for the determination of selenium(IV). Received: 13 November 1996 / Revised: 19 December 1996 / Accepted: 24 December 1996  相似文献   

11.
《Electroanalysis》2005,17(22):2084-2089
This work presents the development of an automatic system for differential pulse amperometry (DPA) with electrochemical deposition. The system consists of a microcomputer, running a home‐made software, connected to a commercial potentiostat through a data acquisition board. The system was applied for selenium determination using gold electrode and flow injection analysis (FIA). Analytical curves were obtained in the concentration range of 20 to 400 μg L?1 for Se(IV), with a calculated detection limit of 6 μg L?1. The analysis results for fish samples doped with Se(IV) and digested in a microwave oven showed recoveries above 93%.  相似文献   

12.
Selenium(IV) is determined by cathodic stripping voltammetry after the formation of a piazselenol with 3,3′-diaminobenzidine. The selenium is then accumulated as HgSe on a mercury electrode by deposition at ?0.45 V. The differential-pulse cathodic stripping peak allows a detection limit of 0.01 μg l?1. For the determination of selenium in natural waters, interferences can be avoided by extraction of the piazselenol into toluene followed by a back-extraction into 0.5 M hydrochloric acid. The accuracy of the overall procedure was checked by analyses of a standard reference material. The method was applied to the determination of selenium(IV) in sea-water samples at levels as low as 20 ng l?1 with a concentration factor of 10 during the extraction procedure.  相似文献   

13.
The utility of the cylindrical silver‐based mercury film electrode of prolonged analytical application in stripping chronopotentiometry (SCP) was examined. This electrode allowed us to obtain good reproducibility of results owing to the special electrode design, which enables regeneration of the thin layer before each measurement cycle. The accessible potential window in KNO3 (pH 2), acetate and ammonia buffers was defined, and the optimal conditions (i.e., stripping current, deposition potential and deposition time) for the determination of Cd and Pb traces were selected. The detection limits, obtained for an accumulation time of 60 s, were 0.023 μg/L for Cd and 0.075 μg/L for Pb. The response increases linearly with Cd, Pb and Zn concentration, up to at least 100 μg/L. It was also shown that the proposed procedure ensures excellent separation of the In and Tl, Pb and Tl or the In and Cd signals. The method was tested with dolomite and lake sediment samples, and good agreement with reference values was achieved. The obtained results showed good reproducibility (RSD=5–6%) and reliability.  相似文献   

14.
The voltammetric behaviour of selenium(IV) was studied at platinum and gold electrodes in sulphuric acid, perchloric acid and potassium chloride media as a basis for its voltammetric detection. The best voltammetric behaviour was recorded at gold electrodes with perchloric acid as the supporting electrolyte. The concomitant presence of metals, such as copper or lead, and of model biomolecules, such as bovine serum albumin, in the solution resulted in a deterioration of the electrochemical response for selenium(IV). Quantitative detection of selenium(IV) by square wave anodic stripping voltammetry at both a millimetre-sized gold disc electrode and a microband electrode array revealed linear responses to selenium concentration in the ranges 5–15 μM and 0.1–10 μM, respectively, with 60 s preconcentration. The sensitivities were 6.4 μA μM−1 cm−2 and 100 μA μM−1 cm−2 at the disc and the microband array, respectively. The detection limit at the microband electrode array was 25 nM, illustrating the potentiality of such microelectrodes for the development of mercury-free analytical methods for the trace detection of selenium(IV).  相似文献   

15.
A solid reagent based on silica successively modified by quaternary ammonium salt and indigocarmine is proposed for the test determination of selenium(IV). The detection limit for selenium is found to be 10 μg/L using catalytic reaction of the reduction of immobilized indigocarmine by sulfide as an indicator reaction. The calibration graph is linear in the range of selenium concentrations from 50 to 400 μg/L. Alkali and alkaline-earth metals, NH 4 + , Cl?, NO 3 ? , and SO 4 2? do not interfere with the determination of selenium. The interference from heavy metals is eliminated by introducing EDTA. The procedure was tested in determining selenium in preparations of vitamins and biologically active supplement.  相似文献   

16.
《Electroanalysis》2018,30(1):194-203
Glassy carbon electrode (GCE) modified with L‐cysteine and gold nanoparticles‐reduced graphene oxide (AuNPs‐RGO) composite was fabricated as a novel electrochemical sensor for the determination of Cu2+. The AuNPs‐RGO composite was formed on GCE surface by electrodeposition. The L‐cysteine was decorated on AuNPs by self‐assembly. Physicochemical and electrochemical properties of L‐cysteine/AuNPs‐RGO/GCE were characterized by scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, Raman spectroscopy, X‐ray diffraction, cyclic voltammetry and adsorptive stripping voltammetry. The results validated that the prepared electrode had many attractive features, such as large electroactive area, good electrical conductivity and high sensitivity. Experimental conditions, including electrodeposition cycle, self‐assembly time, electrolyte pH and preconcentration time were studied and optimized. Stripping signals obtained from L‐cysteine/AuNPs‐RGO/GCE exhibited good linear relationship with Cu2+ concentrations in the range from 2 to 60 μg L−1, with a detection limit of 0.037 μg L−1. Finally, the prepared electrode was applied for the determination of Cu2+ in soil samples, and the results were in agreement with those obtained by inductively coupled plasma mass spectrometry.  相似文献   

17.
Photometric determination of trace selenium in aqueous media   总被引:1,自引:0,他引:1  
A new procedure is developed for the photometric determination of trace selenium in aqueous solutions. The selection of 2-(p-nitrophenyl)-3,5-diphenyltetrazolium chloride as a reagent for selenium is justified. The proposed sample preparation procedure involves gas extraction of selenium as hydrogen selenide followed by its liquid-adsorption extraction from the gas phase to an aqueous reagent solution with the formation of a water-insoluble formazan. Formazan formed upon the absorption of hydrogen selenide is extracted with isoamyl alcohol. The concentration of selenium is determined from the absorbance of the formazan extract in the isoamyl alcohol. The procedure allows the determination of 10–120 μg/L selenium.  相似文献   

18.
A highly sensitive and selective catalytic adsorptive cathodic striping procedure for the determination of trace germanium is presented. The method is based on adsorptive accumulation of the Ge(IV)‐gallic acid (GA) complex onto a hanging mercury drop electrode, followed by reduction of the adsorbed species. The reduction current is enhanced catalytically by addition of vanadium(IV)‐EDTA. The optimal experimental conditions include the use of 0.03 mol/L HClO4 (pH1.6), 6.0×10?3 mol/L GA, 3.0×10?3 mol/L V(IV), 4.0×10?3 mol/L EDTA, an accumulation potential of ?0.10 V(vs. Ag/AgCl), an accumulation time of 120 s and a differential pulse potential scan mode. The peak current is proportional to the concentration of Ge(IV) over the range of 3.0×10?11 to 1.0×10?8 mol/L and the detection limit is 2×10?11 mol/L for a 120 s adsorption time. The relative standard deviation at 5.0×10?10 mol/L level is 3.1%. No serious interferences were found. The method was applied to the determination of germanium in ore, mineral water and vegetable samples with satisfactory results.  相似文献   

19.
A solid-phase micro-extraction (SPME) method using an SPME fiber device and graphite furnace (GF) for extracting Se compounds was proposed. Various factors affecting the derivatization and extraction of Se(IV) by SPME-GF were evaluated, including the effect of acid (type and concentration), the concentration of the derivatizing agent, the derivatization temperature, the extraction and derivatization times and the extraction temperature. After optimizing these conditions, the quantification of Se(IV) was performed by Gas Chromatography-Mass Spectrometry (GC-MS). The limit of detection was 0.37 μg L(-1) for Se(IV). The method was successfully applied to the total Se determination in certified reference materials (BCR-414 and SRM 1643e). A recovery of 97% was obtained for water (SRM 1643e). After microwave oven decomposition and the reduction of selenium using a mixture of 2 mol L(-1) HCl and 1% (w/v) KBr, a recovery of 101% and a relative standard deviation of 3.5% were attained for plankton (BCR-414). The SPME-GF method combined with GC-MS was also applied to the determination of the total selenium in a drug sample (selenium chelate).  相似文献   

20.
We herein report a mercury‐free approach for the sensitive determination of trace Pb2+ in seawater using differential pulse stripping voltammetric (DPSV) method with a novel columnar glassy carbon electrode (CGCE). Compared with the conventional disk glassy carbon electrode with the same diameter, it has much larger electrochemical area (0.627 ± 0.003 cm2). The CGCE shows good accumulation ability and consequently acceptable behavior which makes it suitable as a working electrode in the DPSV determination of Pb2+ with the great advantage of the avoidance of harmful mercury. Using acidified artificial seawater as supporting electrolyte, there was a good linear relationship between the peak currents and the concentration of Pb2+ in the range of 0.6~140.0 μg L‐1 with a detection limit of 0.3 μg/L (S/N = 3) when the accumulation time was 300 s. The method was employed to determine trace levels of Pb2+ in real seawater samples successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号