首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

2.
Let ${\mathcal{D}}_{n,k} $ be the family of linear subspaces of ?n given by all equations of the form $\varepsilon _1 x_{i_1 } = \varepsilon _2 x_{i_2 } = \cdot \cdot \cdot \varepsilon _k x_{i_k } ,$ for 1 ≤ < ? ? ? < i ki and $\left( {\varepsilon _1 ,...,\varepsilon _k } \right)\varepsilon \left\{ { + 1, - 1} \right\}^k $ Also let ${\mathcal{B}}_{n,k,h} $ be ${\mathcal{D}}_{n,k} $ enlarged by the subspaces $x_{j_1 } = x_{j_2 } = \cdot \cdot \cdot x_{j_h } = 0,$ for 1 ≤. The special cases ${\mathcal{B}}_{n,2,1} $ and ${\mathcal{D}}_{n,2} $ are well known as the reflection hyperplane arrangements corresponding to the Coxeter groups of type B nand D n respectively. In this paper we study combinatorial and topological properties of the intersection lattices of these subspace arrangements. Expressions for their Möbius functions and characteristic polynomials are derived. Lexicographic shellability is established in the case of ${\mathcal{B}}_{n,k,h,} 1 \leqslant h < k$ , which allows computation of the homology of its intersection lattice and the cohomology groups of the manifold $\begin{gathered} {\mathcal{D}}_{n,2} \\ M_{n,k,h,} = {\mathbb{R}}^n \backslash \bigcup {{\mathcal{B}}_{n,k,h,} } \\ \end{gathered} $ . For instance, it is shown that $H^d \left( {M_{n,k,k - 1} } \right)$ is torsion-free and is nonzero if and only if d = t(k ? 2) for some $t,0 \leqslant t \leqslant \left[ {{n \mathord{\left/ {\vphantom {n k}} \right. \kern-0em} k}} \right]$ . Torsion-free cohomology follows also for the complement in ?nof the complexification ${\mathcal{B}}_{n,k,h}^C ,1 \leqslant h < k$ .  相似文献   

3.
In this paper we consider the behaviour of partial sums of Fourier—Walsh—Paley series on the group62-01. We prove the following theorems: Theorem 1. Let {n k } k =1/∞ be some increasing convex sequence of natural numbers such that $$\mathop {\lim sup}\limits_m m^{ - 1/2} \log n_m< \infty $$ . Then for anyfL (G) $$\left( {\frac{1}{m}\sum\limits_{j = 1}^m {|Sn_j (f;0)|^2 } } \right)^{1/2} \leqq C \cdot \left\| f \right\|_\infty $$ . Theorem 2. Let {n k } k =1/∞ be a lacunary sequence of natural numbers,n k+1/n kq>1. Then for anyfεL (G) $$\sum\limits_{j = 1}^m {|Sn_j (f;0)| \leqq C_q \cdot m^{1/2} \cdot \log n_m \cdot \left\| f \right\|_\infty } $$ . Theorems. Let µ k =2 k +2 k-2+2 k-4+...+2α 0,α 0=0,1. Then $$\begin{gathered} \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in L^\infty (G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = 0(m)^2 \} .} \hfill \\ \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = \{ \{ a_k \} _{k = 1}^\infty ;\sum\limits_{k = 1}^m {a_k^2 = o(m)^2 \} = } \hfill \\ = \{ \{ S_{\mu _k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} \hfill \\ \end{gathered} $$ . Theorem 4. {{S 2 k(f: 0)} k =1/∞ ,fL (G)}=m. $$\{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G)\} = c. \{ \{ S_{2_k } (f:0\} _{k = 1}^\infty ;f \in C(G),f(0) = 0\} = c_0 $$ .  相似文献   

4.
Let F n be the nth Fibonacci number. The Fibonomial coefficients \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F\) are defined for nk > 0 as follows $$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = \frac{{F_n F_{n - 1} \cdots F_{n - k + 1} }} {{F_1 F_2 \cdots F_k }},$$ with \(\left[ {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right]_F = 1\) and \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = 0\) . In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that $$\sum\limits_{j = 0}^{4l + 1} {\operatorname{sgn} (2l - j)\left[ {\begin{array}{*{20}c} {4l + 1} \\ j \\ \end{array} } \right]_F F_{n - j} = \frac{{F_{2l - 1} }} {{F_{4l + 1} }}\left[ {\begin{array}{*{20}c} {4l + 1} \\ {2l} \\ \end{array} } \right]_F F_{n - 4l - 1} ,}$$ holds for all non-negative integers n and l.  相似文献   

5.
Пусть Tn(f)={L1(f), ..., Ln(f)} — набор линейных функционал ов, заданных на простран стве \(C_{(r - 1)} (\parallel f\parallel _{C_{(r - 1)} } = \mathop {\max }\limits_{0 \leqq i \leqq r - 1} \parallel f^{(i)} \parallel _C );A_{n,r}\) — множество всех так их наборов функцио налов; С2n, 2 — множество всех н аборов из 2n функциона лов вида $$T_{2n} (f) = \{ f(x_1 ), \ldots ,f(x_n ),f'(x_1 ), \ldots ,f'(x_n )\}$$ и s: Еn→Е1. Доказано, что е слиW r множество всех 2π-периодических функ цийfεW∞0, 2πr, то приr=1,2,3,... ирε(1, ∞) и $$\begin{gathered} \mathop {\inf }\limits_{T_{2n} \in A_{2n,r} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \varphi _{n,r} \parallel _p \hfill \\ \mathop {\inf }\limits_{T_{2n} \in C_{2n,2} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \parallel \varphi _{n,r} \parallel _\infty - \varphi _{n,r} \parallel _p , \hfill \\ \end{gathered}$$ где ?n,rr-й периодичес кий интеграл, в средне м равный нулю на периоде, от фун кции ?n, 0t=sign sinnt. При этом указан ы оптимальные методы приближенного вычис ления.  相似文献   

6.
BOUNDARYVALUEPROBLEMSOFSINGULARLYPERTURBEDINTEGRO-DIFFERENTIALEQUATIONSZHOUQINDEMIAOSHUMEI(DepartmentofMathematics,JilinUnive...  相似文献   

7.
For integers b and c the generalized central trinomial coefficient Tn(b,c)denotes the coefficient of xnin the expansion of(x2+bx+c)n.Those Tn=Tn(1,1)(n=0,1,2,...)are the usual central trinomial coefficients,and Tn(3,2)coincides with the Delannoy number Dn=n k=0n k n+k k in combinatorics.We investigate congruences involving generalized central trinomial coefficients systematically.Here are some typical results:For each n=1,2,3,...,we have n-1k=0(2k+1)Tk(b,c)2(b2-4c)n-1-k≡0(mod n2)and in particular n2|n-1k=0(2k+1)D2k;if p is an odd prime then p-1k=0T2k≡-1p(mod p)and p-1k=0D2k≡2p(mod p),where(-)denotes the Legendre symbol.We also raise several conjectures some of which involve parameters in the representations of primes by certain binary quadratic forms.  相似文献   

8.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

9.
В работе для неотрица тельных последовате льностей (...,a ?1 i ), aa 0 i ),a 1 i ), ...), удовлетв оряющих условию \(0< \mathop {\sup }\limits_k a_k^{(i)}< \infty\) (i=1,...,т), доказ а но неравенство (1) $$\begin{gathered} \mathop \sum \limits_{k = - \infty }^\infty \mathop {\sup }\limits_{k \leqq k_1 + \ldots + k_m \leqq k + l} (a_{k_1 }^{(1)} \ldots a_{k_m }^{(m)} ) \geqq \hfill \\ \geqq \mathop \prod \limits_{i = 1}^m (\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )\left[ {\mathop \sum \limits_{i = 1}^m \frac{{\mathop \sum \limits_{k = - \infty }^\infty (a_k^{(i)} )^{p_i } }}{{(\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )^{p_i } }} + l - m + 1} \right], \hfill \\ \end{gathered}$$ гдеl произвольное не отрицательное целое число, 1≦p 1, ...,p m ≦∞ и \(\mathop \sum \limits_{i = 1}^m p_i^{ - 1} = 1\) . Это неравенство явля ется обобщением и уто чнением неравенств А. Прекопа, Ш. Данча и Л. Лейндлера. Доказано также, что ес ли все последователь ности содержат только коне чное число ненулевых членов, то н еобходимым условием для равенства в (1) является существование такого числа α>0, чтоa k( i )=а илиa k( i )=0 для всехi=1,...,m;?∞<k<∞.  相似文献   

10.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

11.
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose P, n, k, τ are integers, P≥1, n≥2, k≥n (τ+1), τ≥0. Put $$J_{k,n} (P) = \int_0^1 \cdots \int_0^1 {\left| {\sum\nolimits_{x = 1}^P {e^{2\pi i(a_1 x + \cdots + a_n x^n )} } } \right|^{2k} da_1 \ldots da_n .} $$ Then $$J_{k,n} \leqslant n!k^{2n\tau } n^{\sigma n^2 u} \cdot 2^{2n^2 \tau } P^{2k - \Delta } ,$$ where $$\begin{gathered} u = u_\tau = min(n + 1,\tau ), \hfill \\ \Delta = \Delta _\tau = n(n + 1)/2 - (1 - 1/n)^{\tau + 1} n^2 /2. \hfill \\ \end{gathered} $$   相似文献   

12.
The aim of this paper is to prove the transcendence of certain infinite products. As applications, we get necessary and sufficient conditions for transcendence of the value of $\Pi_{k=0}^{\infty}(1+a_{k}^{(1)}{z_{1}r^{k}}+\cdot\cdot\cdot+a_{k}^{(m)}{z_{m}r^{k}})$ at appropriate algebraic points, where r ≥ 2 is an integer and {an (i)}n≥ 0 (1 ≤ im) are suitable sequences of algebraic numbers.  相似文献   

13.
This paper is a continuation of [3]. Suppose f∈Hp(T), 0σ r σ f,σ=1/p?1. When p=1, it is just the partial Fourier sums Skf. In this paper we establish the sharp estimations on the degree of approximation: $$\left\{ { - \frac{1}{{logR}}\int\limits_1^R {\left\| {\sigma _r^\delta f - f} \right\|_{H^p (T)}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqq C{\mathbf{ }}{}_p\omega \left( {f,{\mathbf{ }}( - \frac{1}{{logR}})^{1/p} } \right)_{H^p (T)} ,0< p< 1,$$ and \(\frac{1}{{\log L}}\sum\limits_{k - 1}^L {\frac{{\left\| {S_k f - f} \right\|_H 1_{(T)} }}{k} \leqq Cp\omega (f; - \frac{1}{{\log L}})_H 1_{(T)} } \) Where $$\omega (f,{\mathbf{ }}h)_{H^p (T)} \begin{array}{*{20}c} { = Sup} \\ {0 \leqq \left| u \right| \leqq h} \\ \end{array} \left\| {f( \cdot + u) - f( \cdot )} \right\|_{H^p (T).} $$ .  相似文献   

14.
Let {X k,i ; i ≥ 1, k ≥ 1} be a double array of nondegenerate i.i.d. random variables and let {p n ; n ≥ 1} be a sequence of positive integers such that n/p n is bounded away from 0 and ∞. In this paper we give the necessary and sufficient conditions for the asymptotic distribution of the largest entry ${L_{n}={\rm max}_{1\leq i < j\leq p_{n}}|\hat{\rho}^{(n)}_{i,j}|}$ of the sample correlation matrix ${{\bf {\Gamma}}_{n}=(\hat{\rho}_{i,j}^{(n)})_{1\leq i,j\leq p_{n}}}$ where ${\hat{\rho}^{(n)}_{i,j}}$ denotes the Pearson correlation coefficient between (X 1,i , ..., X n,i )′ and (X 1,j ,...,X n,j )′. Write ${F(x)= \mathbb{P}(|X_{1,1}|\leq x), x\geq0}$ , ${W_{c,n}={\rm max}_{1\leq i < j\leq p_{n}}|\sum_{k=1}^{n}(X_{k,i}-c)(X_{k,j}-c)|}$ , and ${W_{n}=W_{0,n},n\geq1,c\in(-\infty,\infty)}$ . Under the assumption that ${\mathbb{E}|X_{1,1}|^{2+\delta} < \infty}$ for some δ > 0, we show that the following six statements are equivalent: $$ {\bf (i)} \quad \lim_{n \to \infty} n^{2}\int\limits_{(n \log n)^{1/4}}^{\infty}\left( F^{n-1}(x) - F^{n-1}\left(\frac{\sqrt{n \log n}}{x}\right) \right) dF(x) = 0,$$ $$ {\bf (ii)}\quad n \mathbb{P}\left ( \max_{1 \leq i < j \leq n}|X_{1,i}X_{1,j} | \geq \sqrt{n \log n}\right ) \to 0 \quad{\rm as}\,n \to \infty,$$ $$ {\bf (iii)}\quad \frac{W_{\mu, n}}{\sqrt {n \log n}}\stackrel{\mathbb{P}}{\rightarrow} 2\sigma^{2},$$ $$ {\bf (iv)}\quad \left ( \frac{n}{\log n}\right )^{1/2} L_{n} \stackrel{\mathbb{P}}{\rightarrow} 2,$$ $$ {\bf (v)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (\frac{W_{\mu, n}^{2}}{n \sigma^{4}} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8\pi}} e^{-t/2}\right \}, - \infty < t < \infty,$$ $$ {\bf (vi)}\quad \lim_{n \rightarrow \infty}\mathbb{P}\left (n L_{n}^{2} - a_{n}\leq t \right ) = \exp \left \{ - \frac{1}{\sqrt{8 \pi}} e^{-t/2}\right \}, - \infty < t < \infty$$ where ${\mu=\mathbb{E}X_{1,1}, \sigma^{2}=\mathbb{E}(X_{1,1} - \mu)^{2}}$ , and a n  = 4 log p n ? log log p n . The equivalences between (i), (ii), (iii), and (v) assume that only ${\mathbb{E}X_{1,1}^{2} < \infty}$ . Weak laws of large numbers for W n and L n , n ≥  1, are also established and these are of the form ${W_{n}/n^{\alpha}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(\alpha > 1/2)$ and ${n^{1-\alpha}L_{n}\stackrel{\mathbb{P}}{\rightarrow} 0}\,(1/2 < \alpha \leq 1)$ , respectively. The current work thus provides weak limit analogues of the strong limit theorems of Li and Rosalsky as well as a necessary and sufficient condition for the asymptotic distribution of L n obtained by Jiang. Some open problems are also posed.  相似文献   

15.
Let X and Y be fences of size n and m, respectively and n, m be either both even or both odd integers (i.e., |m-n| is an even integer). Let \(r = \left\lfloor {{{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} 2}} \right. \kern-0em} 2}} \right\rfloor\) . If 1<n<-m then there are \(a_{n,m} = (m + 1)2^{n - 2} - 2(n - 1)(\begin{array}{*{20}c} {n - 2} \\ r \\ \end{array} )\) of strictly increasing mappings of X to Y. If 1<-m<-n<-2m and s=1/2(n?m) then there are a n,m+b n,m+c n of such mappings, where $$\begin{gathered} b_{n,m} = 8\sum\limits_{i = 0}^{s - 2} {\left( {\begin{array}{*{20}c} {m + 2i + 1} \\ l \\ \end{array} } \right)4^{s - 2 - 1} } \hfill \\ {\text{ }}c_n = \left\{ \begin{gathered} \left( {\begin{array}{*{20}c} {n - 1} \\ {s - 1} \\ \end{array} } \right){\text{ if both }}n,m{\text{ are even;}} \hfill \\ {\text{ 0 if both }}n,m{\text{ are odd}}{\text{.}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$   相似文献   

16.
We show that the number of elements in FM(1+1+n), the modular lattice freely generated by two single elements and an n-element chain, is 1 $$\frac{1}{{6\sqrt 2 }}\sum\limits_{k = 0}^{n + 1} {\left[ {2\left( {\begin{array}{*{20}c} {2k} \\ k \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {2k} \\ {k - 2} \\ \end{array} } \right)} \right]} \left( {\lambda _1^{n - k + 2} - \lambda _2^{n - k + 2} } \right) - 2$$ , where \(\lambda _{1,2} = {{\left( {4 \pm 3\sqrt 2 } \right)} \mathord{\left/ {\vphantom {{\left( {4 \pm 3\sqrt 2 } \right)} 2}} \right. \kern-0em} 2}\) .  相似文献   

17.
This note is a study of approximation of classes of functions and asymptotic simultaneous approximation of functions by theM n -operators of Meyer-König and Zeller which are defined by $$(M_n f)(x) = (1 - x)^{n + 1} \sum\limits_{k = 0}^\infty {f\left( {\frac{k}{{n + k}}} \right)} \left( \begin{array}{l} n + k \\ k \\ \end{array} \right)x^k , n = 1,2,....$$ Among other results it is proved that for 0<α≤1 $$\mathop {\lim }\limits_{n \to \infty } n^{\alpha /2} \mathop {\sup }\limits_{f \in Lip_1 \alpha } \left| {(M_n f)(x) - f(x)} \right| = \frac{{\Gamma \left( {\frac{{\alpha + 1}}{2}} \right)}}{{\pi ^{1/2} }}\left\{ {2x(1 - x)^2 } \right\}^{\alpha /2} $$ and if for a functionf, the derivativeD m+2 f exist at a pointx∈(0, 1), then $$\mathop {\lim }\limits_{n \to \infty } 2n[D^m (M_n f) - D^m f] = \Omega f,$$ where Ω is the linear differential operator given by $$\Omega = x(1 - x)^2 D^{m + 2} + m(3x - 1)(x - 1)D^{m + 1} + m(m - 1)(3x - 2)D^m + m(m - 1)(m - 2)D^{m - 1} .$$   相似文献   

18.
19.
We show that for nn? 4 the L-norm of weak solutions of the Navier-Stokes equations on ?n with generalized energy inequality decays like $\parallel u(t, \cdot )\parallel _\infty = O(t^{ - ({{n + 1)} \mathord{\left/ {\vphantom {{n + 1)} 2}} \right. \kern-0em} 2}} ),if(1 + | \cdot |)|u(0, \cdot )| \in L_1 $ and $$\int_{\mathbb{R}^n } {u(0,x)} dx = 0$$ . The same holds for strong solutions in all dimensions, if additionally u(0, ·) ε Lp p >n.  相似文献   

20.
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号