首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nonclassical properties of photon added and subtracted displaced Fock states are studied using various witnesses of lower‐ and higher‐order nonclassicality. Compact analytic expressions are obtained for the nonclassicality witnesses. Using those expressions, it is established that these states and the states that can be obtained as their limiting cases (except coherent states) are highly nonclassical as they show the existence of lower‐ and higher‐order antibunching and sub‐Poissonian photon statistics, in addition to the nonclassical features revealed through the Mandel Q M parameter, zeros of Q function, Klyshko's criterion, and Agarwal–Tara criterion. Further, some comparison between the nonclassicality of photon added and subtracted displaced Fock states have been performed using witnesses of nonclassicality. This has established that between the two types of non‐Gaussianity inducing operations (i.e., photon addition and subtraction) used here, photon addition influences the nonclassical properties more strongly. Further, optical designs for the generation of photon added and subtracted displaced Fock states from squeezed vacuum state have also been proposed.  相似文献   

3.
Motivated by cold atom and ultra‐fast pump‐probe experiments we study the melting of long‐range antiferromagnetic order of a perfect Néel state in a periodically driven repulsive Hubbard model. The dynamics is calculated for a Bethe lattice in infinite dimensions with non‐equilibrium dynamical mean‐field theory. In the absence of driving melting proceeds differently depending on the quench of the interactions to hopping ratio from the atomic limit. For decay occurs due to mobile charge‐excitations transferring energy to the spin sector, while for it is governed by the dynamics of residual quasi‐particles. Here we explore the rich effects that strong periodic driving has on this relaxation process spanning three frequency ω regimes: (i) high‐frequency , (ii) resonant with integer l, and (iii) in‐gap away from resonance. In case (i) we can quickly switch the decay from quasi‐particle to charge‐excitation mechanism through the suppression of ν0. For (ii) the interaction can be engineered, even allowing an effective regime to be reached, giving the reverse switch from a charge‐excitation to quasi‐particle decay mechanism. For (iii) the exchange interaction can be controlled with little effect on the decay. By combining these regimes we show how periodic driving could be a potential pathway for controlling magnetism in antiferromagnetic materials. Finally, our numerical results demonstrate the accuracy and applicability of matrix product state techniques to the Hamiltonian DMFT impurity problem subjected to strong periodic driving.  相似文献   

4.
The properties of the superconducting and the anomalous normal state were described by using the Eliashberg method. The pairing mechanism was reproduced with the help of the Hamiltonian, which models the electron‐phonon and the electron‐electron‐phonon interaction (EEPh). The set of the Eliashberg equations, which determines the order parameter function (φ), the wave function renormalization factor (Z), and the energy shift function (χ), was derived. It was proven that for the sufficiently large values of the EEPh potential, the doping dependence of the order parameter () has the analogous course to that observed experimentally in cuprates. The energy gap in the electron density of states is induced by Z and χ ‐ the contribution from φ is negligible. The electron density of states possesses the characteristic asymmetric form and the pseudogap is observed above the critical temperature.

  相似文献   


5.
O. Olendski 《Annalen der Physik》2016,528(11-12):882-897
A theoretical analysis of the thermodynamic properties of the Robin wall characterized by the extrapolation length Λ in the electric field that pushes the particle to the surface is presented both in the canonical and two grand canonical representations and in the whole range of the Robin distance with the emphasis on its negative values which for the voltage‐free configuration support negative‐energy bound state. For the canonical ensemble, the heat capacity at exhibits a nonmonotonic behavior as a function of the temperature T with its pronounced maximum unrestrictedly increasing for the decreasing fields as and its location being proportional to . For the Fermi‐Dirac distribution, the specific heat per particle is a nonmonotonic function of the temperature too with the conspicuous extremum being preceded on the T axis by the plateau whose magnitude at the vanishing is defined as , with N being a number of the particles. The maximum of is the largest for and, similar to the canonical ensemble, grows to infinity as the field goes to zero. For the Bose‐Einstein ensemble, a formation of the sharp asymmetric feature on the ‐T dependence with the increase of N is shown to be more prominent at the lower voltages. This cusp‐like dependence of the heat capacity on the temperature, which for the infinite number of bosons transforms into the discontinuity of , is an indication of the phase transition to the condensate state. Some other physical characteristics such as the critical temperature and ground‐level population of the Bose‐Einstein condensate are calculated and analyzed as a function of the field and extrapolation length. Qualitative and quantitative explanation of these physical phenomena is based on the variation of the energy spectrum by the electric field.  相似文献   

6.
A non conventional source or receiver of THz and above THz electromagnetic radiation is proposed. Specifically, electron or hole oscillations in DNA dimers (two interacting DNA base‐pairs or monomers) are predicted, with frequency in the range 0.25–100 THz (period 10–4000 fs) i.e. potentially absorbing or emitting electromagnetic radiation mainly in the mid‐ and far‐infrared with wavelengths ≈ 3–1200 μm. The efficiency of charge transfer between the two monomers which make up the dimer is described with the maximum transfer percentage p  and the pure maximum transfer rate . For dimers made of identical monomers , but for dimers made of different monomers . The investigation is extended to DNA trimers (three interacting DNA base‐pairs or monomers). For trimers made of identical monomers the carrier oscillates periodically with 0.5–33 THz ( 30–2000 fs); for 0 times crosswise purines , for 1 or 2 times crosswise purines . For trimers made of different monomers the carrier movement may be non periodic. Generally, increasing the number of monomers above three, the system becomes more complex and periodicity is lost; even for the simplest tetramer the carrier movement is not periodic.  相似文献   

7.
The superfluid p = p x + ip y phases in an ultracold gas of dipolar Fermi molecules lying in two parallel square lattices in 2D are investigated. As shown by a two‐body study, dipole moments oriented in opposite directions in each layer are the key ingredients in our mean‐field analysis from which unconventional superfluidity is predicted. The T = 0 phase diagram summarizes our findings: stable and metastable superfluid phases appear as a function of both, the dipole–dipole interaction coupling parameter and filling factor. A first‐order phase transition, and thus a mixture of superfluid phases at different densities, is revealed from the coexistence curves in the metastable region. The model predicts that these superfluid phases can be observed experimentally at 10 nK in molecules of NaK confined in optical lattices of size a = 532  nm. Other routes to reach higher temperatures require the use of subwavelength confinement technique .  相似文献   

8.
Since the quality factor of an acoustic wave resonator (AWR) reached 1011, AWRs have been regarded as a good carrier of quantum information. In this paper, a scheme to construct a NOON state with two AWRs assisted by a nitrogen‐vacancy‐center ensemble (NVE) is proposed. The two AWRs cross each other vertically, and the NVE is located at the center of the crossing. By considering the decoherence of the system and using resonant interactions between the AWRs and the NVE, and the single‐qubit operation of the NVE, a NOON state can be achieved with a fidelity higher than 98.8% when the number of phonons in the AWR is N 3 .  相似文献   

9.
The quanum levels and corresponding vortex states in nanoscale superconductors are investigated within generalized Bogolubov‐de Gennes theory. For symmetric (square‐shaped) samples thermodynamically stable vortex phases form symmetry‐consistent patterns and no transition to conventional Abrikosov‐like vortex patterns occurs till T=0K for sizes not exceeding 25 nm. For vorticity a giant vortex is stabilized at temperatures in the vicinity of , which transforms into a giant antivortex and four normal vortices with lowering the temperature. On the other hand, the vortex pattern for vorticity corresponds to an antivortex and four normal vortices in the whole temperature domain.  相似文献   

10.
Defects and frequently used defect models of solids are reviewed. Signatures for identifying the disorder from x‐ray and neutron scattering data are given. To give illustrative examples how technologically important defects contribute to x‐ray and neutron scattering numerical method able to treat non‐periodical solids possessing several simultaneous defect types is given for simulating scattering in nanosize disordered clusters. The approach takes particle size, shape, and defects into account and isolates element specific signals. As a case study a statistical approximation model for lead‐zirconate titanate [Pb(ZrxTi)O3, PZT] is introduced. PZT is a material possessing several defect types, including substitutional, displacement and surface defects. Spatial composition variation is taken into account by introducing a model in which the edge lengths of each cell depend on the distribution of Zr and Ti ions in the cluster. Spatially varying edge lengths and angles is referred to as microstrain. The model is applied to compute the scattering from ellipsoid shaped PZT clusters and to simulate the structural changes as a function of average composition. Two‐phase co‐existence range, the so called morphotropic phase boundary composition is given correctly. The composition at which the rhombohedral and tetragonal cells are equally abundant was . Selected x‐ray and neutron Bragg reflection intensities and line shapes were simulated. Examples of the effect of size and shape of the scattering clusters on diffraction patterns are given and the particle dimensions, computed through Scherrer equation, are compared with the exact cluster dimensions. Scattering from two types of 180° domains in spherical particles, one type assigned to Ti‐rich PZT and the second to the MPB and Zr‐rich PZT, is computed. We show how the method can be used for modelling polarization reversal.

  相似文献   


11.
The impact of bound states in Landauer‐Büttiker scattering approach to non‐equilibrium quantum transport is investigated. We show that the noise power at frequency ν is sensitive to all bound states with energies ωb satisfying . We derive the exact expression of the bound state contribution and compare it to the one produced by the scattering states alone. The theoretical and experimental consequences of this result are discussed.  相似文献   

12.
Ralf Hofmann 《Annalen der Physik》2015,527(3-4):254-264
Presuming that CMB photons are described by the deconfining phase of an SU(2) Yang‐Mills theory with the critical temperature for the deconfining‐preconfining phase transition matching the present CMB temperature K (SU(2)CMB), we investigate how CMB temperature T connects with the cosmological scale factor a in a Friedmann‐Lemaître‐Robertson‐Walker Universe. Owing to a violation of conformal scaling at late times, the tension between the (instantaneous) redshift of reionisation from CMB observation () and quasar spectra () is repealed. Also, we find that the redshift of CMB decoupling moves from to which questions ΛCDM cosmology at high redshifts. Adapting this model to the conventional physics of three flavours of massless cosmic neutrinos, we demonstrate inconsistency with the value Neff ~ 3.36 extracted from Planck data. Interactions between cosmic neutrinos and the CMB implies a common temperature T of (no longer separately conserved) CMB and neutrino fluids. Neff ~ 3.36 then entails a universal, temperature induced cosmic neutrino mass with . Our above results on zre and zdec, derived from SU(2)CMB alone, are essentially unaffected when including such a neutrino sector.

  相似文献   


13.
Following the Dirac‐Frenkel time‐dependent variational principle, transient dynamics of a one‐dimensional Holstein polaron with diagonal and off‐diagonal exciton‐phonon coupling in an external electric field is studied by employing the multi‐D2 Ansatz, also known as a superposition of the usual Davydov D2 trial states. Resultant polaron dynamics has significantly enhanced accuracy, and is in perfect agreement with that derived from the hierarchy equations of motion method. Starting from an initial broad wave packet, the exciton undergoes typical Bloch oscillations. Adding weak exciton‐phonon coupling leads to a broadened exciton wave packet and a reduced current amplitude. Using a narrow wave packet as the initial state, the bare exciton oscillates in a symmetric breathing mode, but the symmetry is easily broken by weak coupling to phonons, resulting in a non‐zero exciton current. For both scenarios, temporal periodicity is unchanged by exciton‐phonon coupling. In particular, at variance with the case of an infinite linear chain, no steady state is found in a finite‐sized ring within the anti‐adiabatic regime. For strong diagonal coupling, the multi‐ Anstaz is found to be highly accurate, and the phonon confinement gives rise to exciton localization and decay of the Bloch oscillations.

  相似文献   


14.
A linear optical unambiguous discrimination of hyperentangled Bell states is proposed for two‐photon systems entangled in both the polarization and momentum degrees of freedom (DOFs) assisted by time bin. This unambiguous discrimination scheme can completely identify 16 orthogonal hyperentangled Bell states using only linear optical elements, where the function of the auxiliary entangled Bell state is replaced by time bin. Moreover, the possibility of extending this scheme for distinguishing hyperentangled Bell states in n DOFs is discussed, and it shows that 2 n + k + 1 hyperentangled Bell states in n ( n 2 ) DOFs can be distinguished with k ( k < n ) auxiliary entangled states of additional DOFs by introducing a time delay, which decreases the auxiliary entanglement resource required for unambiguous discrimination of hyperentangled Bell state. Therefore, this scheme provides a new way for distinguishing hyperentangled states with current technology, which will extend the application of discrimination of hyperentangled states via linear optics to other quantum information protocols besides hyperdense coding schemes in the future.  相似文献   

15.
The application of semi‐quantum conception can provide unconditional secure communication for communicators without quantum capabilities. A semi‐quantum key distribution (SQKD) protocol based on four‐particle cluster states is put forward, which can achieve key distribution among one quantum party and two classical parties simultaneously. Furthermore, this protocol can be expanded to the χ‐party ( χ > 3 ) communication scheme. Compared with the existing multi‐party SQKD protocol, the proposed protocol and the extended one own more excellent time efficiency and qubit efficiency. The security of the proposed SQKD protocol under ideal circumstances is validated while the key rate under non‐ideal conditions is calculated.  相似文献   

16.
Single crystalline LiAlO is known as a very poor ion conductor. Thus, in its crystalline form it unequivocally disqualifies itself from being a powerful solid electrolyte in modern energy storage systems. On the other hand, its interesting crystal structure proves beneficial to sharpen our understanding of Li ion dynamics in solids which in return might influence application‐oriented research. LiAlO allows us to apply and test techniques that are sensitive to extremely slow Li ion dynamics. This helps us clarifying their diffusion behaviour from a fundamental point of view. Here, we combined two techniques to follow Li ion translational hopping in LiAlO that can be described by the same physical formalism: dynamic mechanical relaxation and electrical relaxation, i.e., ionic conductivity measurements. Via both methods we were able to track the same transport mechanism in LiAlO. Moreover, this enabled us to directly probe extremely slow Li exchange rates at temperatures slightly above 430 K. The results were compared with recent insights from nuclear magnetic resonance spectroscopy. Altogether, an Arrhenius‐type Li diffusion process with an activation energy of ca. 1.12 eV was revealed over a large dynamic range covering 10 orders of magnitude, i.e., spanning a dynamic range from the nano‐second time scale down to the second time scale.

  相似文献   


17.
We investigate the quantum temporal steering (TS), i.e., a temporal analogue of Einstein‐Podolsky‐Rosen steering, in a dephasing channel which is modeled by a central spin half surrounded by a spin‐1/2 XY chain where quantum phase transition happens. The TS parameter and the TS weight are employed to characterize the TS dynamics. We analytically obtain the dependence of on the decoherence factor. The numerical results show an obvious suppression of and when the XY chain approaches to the critical point. In view of the significance of quantum channel, we develop a new concept, TS weight power, in order to quantify the capacity of the quantum channel in dominating TS behavior. This new quantity enables us to indicate the quantum criticality of the environment by the quantum correlation of TS in the coupled system.  相似文献   

18.
The 2D materials with both ferromagnetism and semiconducting properties are desirable for spintronics applications. Here, inspired by the successful synthesis of single-layer CoCl 2 $_2$ , it predicts that Janus single-layer CoClBr is a 2D intrinsic ferromagnetic semiconductor with a direct bandgap of 3.71 eV by first-principles calculations. Single-layer CoClBr exhibits an in-plane magnetic anisotropic energy (MAE) of 542.25 μ $\mu$ eV per Co atom and a Curie temperature (T c $_c$ ) of 89.49 K. Biaxial strain can effectively modulate its bandgap, MAE, and T c $_c$ , but will not change the ferromagnetic ground state. Compressive strain can increase the Curie temperature and switch the spin moment from in-plane direction to out-of-plane direction. Tensile strain can enlarge the bandgap and introduce a direct-to-indirect bandgap transition in CoClBr. The MAE of CoClBr reaches 391.73 μ $\mu$ eV per Co atom and 1560.49 μ $\mu$ eV per Co atom at a compressive strain of -2% and a tensile strain of 5%, respectively. The tunable electronic and magnetic properties of Janus single-layer CoClBr has potential application in low-dimensional spintronics devices.  相似文献   

19.
A fundamental problem regarding the Dirac quantization of a free particle on an () curved hypersurface embedded in N flat space is the impossibility to give the same form of the curvature‐induced quantum potential, the geometric potential as commonly called, as that given by the Schrödinger equation method where the particle moves in a region confined by a thin‐layer sandwiching the surface. This problem is resolved by means of a previously proposed scheme that hypothesizes a simultaneous quantization of positions, momenta, and Hamiltonian, among which the operator‐ordering‐free section is identified and is then found sufficient to lead to the expected form of geometric potential.  相似文献   

20.
We extend a new method to measure possible variation of the speed of light by using Baryon Acoustic Oscillations and the Hubble function onto an inhomogeneous pressure model of the universe. The method relies on the fact that there is a simple relation between the angular diameter distance maximum and the Hubble function (H) evaluated at the same maximum‐condition redshift, which includes the speed of light c. One limit of such a method was the assumption of the vanishing of spatial curvature (though, as it has been shown, a non‐zero curvature has negligible effect). In this paper, apart from taking into account an inhomogeneity, we consider non‐zero spatial curvature and calculate an exact relation between and H. Our main result is the evaluation if current or future missions such as Square Kilometer Array (SKA) can be sensitive enough to detect any spatial variation of c which can in principle be related to the recently observed spatial variation of the fine structure constant (an effect known as α‐dipole).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号