首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly conducting metal-film subwavelength hole arrays, lithographically fabricated on high-resistivity silicon wafers in optical contact with thick silicon plates, have been characterized by terahertz time-domain spectroscopy with subpicosecond resolution and over a frequency range from 0.5 to 3 THz with 5 GHz resolution. A well-defined ringing structure extending to more than 250 psec is observed on the trailing edge of the transmitted THz pulse. In the frequency domain this ringing structure corresponds to a new type of extremely sharp resonant line structure between the fundamental surface plasmon modes of the hole array. A simple theoretical model is presented and shows good agreement with the experimental data.  相似文献   

2.
李江艳  甘霖  李志远 《中国物理 B》2013,22(11):117302-117302
We image optical near-field patterns at subwavelength circular hole arrays in Au film by using scanning near-field optical microscopy in near-infrared wavelengths.Periodical oscillation features are found in the near-field images at the air/Au interface and exhibit two typical kinds of standing wave oscillation forms at the wavelengths corresponding to the transmission minimum and maximum in the transmission spectrum,and the latter one originates from the excitation and interference of a surface plasmon wave at the metallic hole arrays.Our work indicates that monitoring optical near-field patterns can help to reveal many interesting properties of surface plasmon waves at metallic nanostructures and understand their underlying physical mechanisms.  相似文献   

3.
The unique optical properties of Tamm plasmons (TPs) – such as flexible wavevector matching conditions including inplane wavevector within the light line, and existing both S‐ and P‐polarized TPs − facilitate them for direct optical excitation. The Tamm plasmon‐coupled emission (TPCE) from a combined photonic–plasmonic structure sustaining both surface plasmons (SPs) and TPs is described in this paper. The sensitivity of TPCE to the emission wavelength and polarization is examined with back focal plane imaging and verified with the numerical calculations. The results reveal that the excited probe can couple with both TPs and SPs, resulting in surface plasmon‐coupled emission (SPCE) and TPCE, respectively. The TPCE angle is strongly dependent on the wavelength allowing for spectral resolution using different observation angles. These Tamm structures provide a new tool to control the optical emission from dye molecules and have many potential applications in fluorescence‐based sensing and imaging.  相似文献   

4.
The influence of the core‐hole effect on optical properties of magnesium oxide (MgO) is established through experimental determination of optical constants and first‐principles density functional theory studies. Optical constants (δ and β) of MgO thin film are measured in the spectral region 40–300 eV using reflectance spectroscopy techniques at the Indus‐1 synchrotron radiation source. The obtained optical constants show strong core exciton features near the Mg L‐edge region, causing significant mismatch with Henke's tabulated values. On comparing the experimentally obtained optical constants with Henke's tabulated values, an edge shift of ~3.0 eV is also observed. Distinct evidence of effects of core exciton on optical constants (δ and β) in the near Mg L‐edge absorption spectra are confirmed through first‐principles simulations.  相似文献   

5.
In order to assess the usability of X‐ray absorption near‐edge structure (XANES) for studying the structure of BOn‐containing materials, the dependence of theoretical XANES at the B K‐edge on the way the scattering potential is constructed is investigated. Real‐space multiple‐scattering calculations are performed for self‐consistent and non‐self‐consistent potentials and for different ways of dealing with the core hole. It is found that in order to reproduce the principal XANES features it is sufficient to use a non‐self‐consistent potential with a relaxed and screened core hole. Employing theoretical modelling of XANES for studying the structure of boron‐containing glasses is thus possible. The core hole affects the spectrum significantly, especially in the pre‐edge region. In contrast to minerals, B K‐edge XANES of BPO4 can be reproduced only if a self‐consistent potential is employed.  相似文献   

6.
Chiral responses are optical responses involving circular polarizations. Controlling the chiral response in a flexible way is very important in optical manipulations. Chiral metamaterials have thus drawn enormous interest due to their flexible designing feature. However, most of the previous studies are mainly realized by designing the structure of the individual meta‐atom. Meanwhile, to enhance the response, complex design and fabrication processes are typically required. Here, by introducing spin‐dependent propagating surface plasmons and spin‐selective interference, giant spin‐resolved transmission is achieved in a simple meta‐hole structure. In this interaction process, spin‐orbital angular momentum conversion plays an essential role. By controlling the phase difference between the interference components, controllable spin‐resolved transmission is achieved. Furthermore, such method can also be applied to realize spin‐resolved excitation of surface plasmons. The proposed controlling strategy offers a versatile platform for a variety of promising applications, such as polarization control, asymmetric transmission, surface plasmon excitation, and on‐chip chiral manipulation.  相似文献   

7.
Extraordinary transmission spectra for one-dimensional (1D) gratings and two-dimensional (2D) metallic hole arrays change with the hole channel shape. In this paper, a converging-diverging channel (CDC) design was introduced. The transmission spectra corresponding to CDC-embedded nanostructures of 1D grating, circular and rectangular holes (2D hole arrays) are analyzed using three-dimensional (3D) finite-element method. Tuning of optical transmission by changing the CDC structure has been investigated. In addition, a cavity composed of a CDC metallic grating and a 1D photonic crystal (PhC) can lead to an enhanced emission. Large coherence length of the emission can be achieved by exploiting coherent properties of surface waves in grating and PhC.  相似文献   

8.
9.
Jian Chen  Haihua Li 《Optik》2011,122(12):1079-1083
The bandgap effect of photonic crystals (PCs) and the effect of grating diffraction can be used to improve the extraction efficiency of light from the light-emitting diode (LED). The transmission of light at certain wavelength through periodic sub-wavelength hole arrays in metal films is extraordinary, surface plasmon (SP) effects effectively. In this letter, silver metallic photonic crystals with square lattice of cylinder unit cells are fabricated in GaN layer of GaN-based blue LED. We use the finite-difference time-domain (FDTD) method to investigate the optical transmission, the results show that the light extraction efficiency is enhanced by more than four times. Then we use the surface plasmon dispersion relation to analyze the mechanism of antireflection.  相似文献   

10.
In this paper we investigated the enhanced transmission and surface plasmon resonance through a thin gold film with a periodic array of subwavelength nanoholes. Both freestanding gold-film nanohole arrays and gold-film nanohole arrays deposited on a gallium arsenide (GaAs) substrate are considered. Periodic arrays of nanoholes exhibit two different surface plasmon resonance features: localized waveguide resonance and the well-recognized photonic crystal resonance. The tangential electric field component Ey is nonzero only in the hole region for a freestanding gold-film nanohole array, but it can exist in the hole region and in the metallic region for a gold-film nanohole array deposited on a GaAs substrate.  相似文献   

11.
用巯基乙酸作稳定剂制备CdSe纳米晶的光学性质   总被引:5,自引:1,他引:4  
Wageh S  刘舒曼  徐叙瑢 《发光学报》2002,23(2):145-151
以巯基乙酸为稳定剂制备了CdSe纳米晶,通过尺寸选择沉淀得到2nm到3nm之间不同尺寸的纳米晶,利用室温光吸收,光致发光(PL)和光致发光激发(PLE)谱来研究了CdSe纳米团簇的光学性质。紫外-可见吸收谱给了具有清晰激光特征的尖锐吸收边,这表明样品的尺寸分布很窄。光致发光研究表明,样品有两个发射带,一个具有较高能量位于吸收边,来自电子-空穴对从最低激发态能级弛豫后的辐射复合,另一个低能发射带归属于基质与纳米晶界面存在的俘获中心。PLE谱中有2个吸收带,分别是S-S和P-P跃迁。最后还给出了不同激发能量下的发光特性。  相似文献   

12.
产生不同类型局域空心光束的可拆式组合轴棱锥   总被引:1,自引:1,他引:0  
方翔  吴逢铁  程治明 《光学学报》2012,32(8):826002-235
提出一种产生尺寸可调局域空心光束的新型光学元件——可拆式组合轴棱锥,这种新型光学元件是在传统轴棱锥的中部沿其轴线方向贯通开设一圆孔,在圆孔内嵌设一第二轴棱锥组成。通过更换不同底角的第二轴棱锥(或第一轴棱锥),可形成不同尺寸的单个局域空心光束或周期性局域空心光束。从几何光学出发分析了产生局域空心光束的原理,计算了局域空心光束的相关参量。由衍射积分理论分析和模拟了新型光学元件的光强分布特性。几何光学和衍射理论所得分析结果基本吻合。  相似文献   

13.
We numerically investigate the surface plasmon resonance (SPR) mode patterns in periodic silver-shell nanopearl arrays and its dimer arrays with the core relative permittivities filled inside the dielectric holes (DHs) by means of finite element method with three-dimensional calculations. Numerical results of resonant wavelengths corresponding to the effects of different period of unit cells, radii of DHs, illumination wavelengths, field propagation, electrical field stream lines, charge distributions, charge densities, half- body charge densities, and the DH core relative permittivities of periodic silver-shell nanopearls are also reported. It can be seen that the periodic silver-shell nanopearl arrays and its dimer arrays with DHs exhibit tunable SPR modes corresponding to the bonding and anti-bonding modes, respectively, that are not observed for the solid silver cases with the same volume. These results are crucial in designing localized SPR sensors and other optical devices based on periodic metal nanoparticle array structures.  相似文献   

14.
We present experimental evidence of sharp spectral features in the optical response of 2D arrays of gold nanorods. A simple coupled dipole model is used to describe the main features of the observed spectral line shape. The resonance involves an interplay between the excitation of plasmons localized on the particles and diffraction resulting from the scattering by the periodic arrangement of these particles. We investigate this interplay by varying the particle size, aspect ratio, and interparticle spacing, and observe the effect on the position, width, and intensity of the sharp spectral feature.  相似文献   

15.
Various resonators for surface emission are reviewed that have recently been developed to improve radiative‐ and collection‐efficiencies of terahertz quantum cascade lasers (THz QCL). While the fabrication of waveguides for long wavelengths is challenging in terms of molecular beam epitaxy, long wavelengths also provide a wonderful testbed for new photonics structure concepts, since these can be easily produced by conventional optical lithography because of the typically large size of the required features. This led to novel geometries, like one‐ and two‐dimensional non‐periodic photonic crystals, or circular gratings for microdisk‐ and ring‐lasers, which are all implemented by simply patterning the top metal cladding of a metal‐metal waveguide. The modeling of such resonators with the finite element method is also described, highlighting the importance of this tool for the engineering of surface losses and far‐field patterns.  相似文献   

16.
The transmission spectrum of a metal that is perforated with a periodic array of subwavelength holes exhibits well-defined maxima and minima resulting from, respectively, a transmission enhancement by surface plasmons and Wood's anomaly, a diffraction effect. These features occur at wavelengths determined by the geometry of the hole arrays, the refractive index of the adjacent medium, and the angle of incidence. We demonstrate control of the transmission through variation of these parameters and show that perforated metal films may form a novel basis for electro-optic devices such as flat-panel displays, spatial light modulators, and tunable optical filters.  相似文献   

17.
针对视觉测量硬盘圆孔直径易受到圆孔周围高反光面强反射的影响而导致测量精度不高的问题,提出了一种基于分数阶微分的图像去噪声的处理方法。通过分数阶微分算法对相机采集的带有强反射、高反光的硬盘圆孔孔径图像进行处理,消除圆孔周围强反射表面等不相关信息对圆孔边缘提取带来的影响,通过实验分别与Prewitt、Soble、Laplacian算子进行比较,证明分数阶微分可有效减少所要分析的图像信息量,更好地增强圆孔边缘轮廓信息,可达到更好的视觉效果。对分数阶微分算法处理后的圆孔图像进行Canny边缘检测,提取出有效的圆孔边缘,利用最小二乘法对孔径边缘进行直径测量。实验结果表明:该文算法与其他算法相比,在保证精确提取孔径边缘信息的基础上,对圆孔周围的强反射面进行了抑制,误差控制在0.05 mm左右,保证了测量精度。  相似文献   

18.
We show that extraordinary light transmission of periodic subwavelength hole arrays, generally attributed to surface-plasmon resonances, is strongly influenced by the hole shape. Both experiments and calculations, based on a Fourier modal method, demonstrate that a shape change from circular to rectangular increases the normalized transmission by an order of magnitude while the hole area decreases. Moreover, the spectra exhibit large redshifts (approximately 2500 cm(-1)). A comparison with the transmission of isolated holes shows that shape resonances of the rectangular holes play a dominant role.  相似文献   

19.
The optical response of an atomic vapor can be coherently manipulated by tunable quantum interference occurring in atomic transition processes. A periodic layered medium whose unit cells consist of a dielectric and an EIT (electromagnetically induced transparency) atomic vapor is designed for light propagation manipulation. Such an EIT‐based periodic layered medium exhibits a flexible frequency‐sensitive optical response, where a very small change in probe frequency can lead to a drastic variation of reflectance and transmittance. As the destructive quantum interference relevant to two‐photon resonance arises in EIT atoms interacting with both control and probe fields, the controllable optical processes that depend sensitively on the external control field will take place in this EIT‐based periodic layered medium. Such a frequency‐sensitive and field‐controlled optical behavior of reflection and transmission in the EIT photonic crystal can be applicable to designs of new devices such as photonic switches, photonic logic gates and photonic transistors, where one laser field can be controlled by the other one, and would have potential applications in the areas of integrated optical circuits and other related techniques (e.g., all‐optical instrumentations).  相似文献   

20.
We report spatial domain measurements of the damping of surface-plasmon excitations in metal films with periodic nanohole arrays. The measurements reveal a short coherent propagation length of a few microm inside nanohole arrays, consistent with delays of about 10 fs in ultrafast transmission experiments. This implies that the transmission spectra of the entire plasmonic band-gap structure are homogeneously broadened by radiative damping of surface-plasmon excitations. We show that a Rayleigh-like scattering of surface plasmons by the periodic hole array is the microscopic origin of this damping, allowing the reradiation rate to be controlled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号