首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel mechanism is identified leading to negative linear compressibility (NLC) in boron arsenate which is shown to arise from deformations in the framework tetrahedra rather than more conspicuous tetrahedral rotations. Instead, such rotations, which manifest as “rotating squares” when viewed down the c direction, are found to result in negative Poisson's ratio (NPR) in the (001) plane, which in turn augments the compressibility, a phenomenon that should be applicable to other auxetic materials. It is hypothesized that the generic NLC and NPR mechanisms identified here, as well as the augmented compressibility due to auxeticity should also feature in materials and metamaterials with similar characteristics.  相似文献   

2.
本文利用第一性原理PBE密度泛函理论计算的方法设计了一种由炔基链、吡啶环及少量氢原子组成的具有内凹六边形结构单元的新型理想二维碳纳米结构,并对其平面内负泊松比效应等力学性能和光学性能与电子结构进行了预测.计算表明,该2D材料具有较好的结构稳定性和特殊的力学性能.当将该2D结构在面内(bc面)沿c方向压缩时,其在b方向收缩;当沿c方向拉伸时,其在b方向伸长,即该2D结构同样具有期望的负泊松比效应.材料的泊松比为-3.26;将该2D结构沿b方向拉伸时,c方向将随之伸长;沿b方向压缩时,c方向将随之收缩.沿b方向拉伸或压缩时,泊松比约为-1.951.即该2D材料在面内具有非常显著的负泊松比效应.此外,该2D材料表现出半导体材料的电子结构特征和良好的光反射和折射性能.希望本工作能为具有本征负泊松比效应和优良电子与光学功能的理想二维碳纳米材料的开发提供一种理想的结构设计策略.  相似文献   

3.
In this paper, the elastic band structures of two-dimensional solid phononic crystals (PCs) with both negative and positive Poisson's ratios are investigated based on the finite difference domain method. Systems with different combinations of mass density ratio and shear modulus ratio, filling fractions and lattices are considered. The numerical results show that for the PCs with both large mass density ratio and shear modulus ratio, the first bandgap becomes narrower with its upper edge becoming lower as Poisson's ratio of the scatterers decreases from −0.1 to −0.9. Generally, introducing the material with a negative Poisson's ratio for scatterers will make this bandgap lower and narrower. For the PCs with large mass density ratio and small shear modulus ratio, the first bandgap becomes wider with Poisson's ratio of the scatterers decreasing and that of the host increasing. It is easy to obtain a wide low-frequency bandgap by embedding scatterers with a negative Poisson's ratio into the host with a positive Poisson's ratio. The PCs with large filling fractions are more sensitive to the variations of Poisson's ratios. Use of negative Poisson's ratio provides us a way of tuning bandgaps.  相似文献   

4.
Monte Carlo simulations in the isobaric–isothermal ensemble with variable shape of the periodic box were used to investigate Poisson's ratios of the hard‐core repulsive Yukawa crystals with periodically distributed nanoslits. Each nanoslit, oriented perpendicularly to the crystallographic direction [010], was filled by a monolayer of hard spheres. It is shown that presence of the nanoslits leads to negative Poisson's ratio, as low as –0.57(2), in the [100][001]‐direction. This direction is not auxetic in the pure Yukawa crystal, i.e. shows positive Poisson's ratio, equal to 0.43(1).  相似文献   

5.
A surface wave of frequency lying within bulk band of transverse waves is found in an elastic medium coated with a thin layer endowed with a surface mass density, surface Young's modulus and surface bending modulus. The wave is a particular case of surface resonance with infinite lifetime. In materials with negative Poisson's ratio (auxetics) the wave exists even for coating material with zero bending modulus, whereas with positive Poisson's ratio it requires the surface bending modulus to be larger than the surface Young's modulus. The manifestation of this wave in the reflection coefficient seems promising for fabrication of devices showing monochromator properties.  相似文献   

6.
Electronic structure and mechanical properties of cubic crystallographic structures with point defects in Al-based alloys are investigated using the first-principles calculations. Equilibrium structural parameters and mechanical parameters such as bulk modulus, shear modulus, Young's modulus, Poisson's ratio and anisotropy are calculated and agreed well with experimental values. Effects of point defects on the electronic structures and mechanical properties of such cubic phases are further analyzed and discussed in view of the charge density and the density of states.  相似文献   

7.
Pressure-induced structural aspects and elastic properties of NaCl-type (B1) to CsCl-type (B2) structure in praseodymium chalcogenides and pnictides are presented. Ground-state properties are numerically computed by considering long-range Coulomb interactions, Hafemeister and Flygare type short-range overlap repulsion, and van der Waals interaction in the interionic potential. From the elastic constants, Poisson's ratio ν, the ratio RG/B of G (shear modulus) over B (bulk modulus), anisotropy parameter, shear and Young's moduli, Lamé's constant, Kleinman parameter, elastic wave velocity and thermodynamical property such as Debye temperature are calculated. Poisson's ratio ν and the ratio RG/B indicate that PrX and PrY are brittle in B1 phase and ductile in B2 phase. To our knowledge, this is the first quantitative theoretical prediction of the ductile (brittle) nature of praseodymium chalcogenides and pnictides and still awaits experimental confirmation.  相似文献   

8.
The utilization of graphene nanoribbons for next generation nanoelectronics is commonly expected to depend on the controlled synthesis that yields a low density of defects. Edge roughness and vacancies have been shown to have a large impact on the performance of graphene nanoribbon transistors. In contrast, we show how certain defects can be used to enhance the electronic and magnetic properties of graphene nanoribbons. We explore the properties of hybrid graphene nanoribbons with armchair and zigzag features joined by an array of pentagon–heptagon structural defects. The graphene nanoribbons display an increased density of states at the Fermi level, and half metallicity in absence of external fields. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
In the open literature, reports of mechanical properties are limited for semiconducting thermoelectric materials, including the temperature dependence of elastic moduli. In this study, for both cast ingots and hot-pressed billets of Ag-, Sb-, Sn- and S-doped PbTe thermoelectric materials, resonant ultrasound spectroscopy (RUS) was utilized to determine the temperature dependence of elastic moduli, including Young's modulus, shear modulus and Poisson's ratio. This study is the first to determine the temperature-dependent elastic moduli for these PbTe-based thermoelectrics, and among the few determinations of elasticity of any thermoelectric material for temperatures above 300 K. The Young's modulus and Poisson's ratio, measured from room temperature to 773 K during heating and cooling, agreed well. Also, the observed Young's modulus, E, versus temperature, T, relationship, E(T) = E 0(1–bT), is consistent with predictions for materials in the range well above the Debye temperature. A nanoindentation study of Young's modulus on the specimen faces showed that both the cast and hot-pressed specimens were approximately elastically isotropic.  相似文献   

10.
To probe the intrinsic stress distribution in terms of spatial Raman shift (ω) and change in the phonon linewidth (Γ), here we analyze self‐assembled graphene oxide fibers (GOF) ‘Latin letters’ by confocal Raman spectroscopy. The self‐assembly of GOF ‘Latin letters’ has been explained through surface tension, π–π stacking, van der Waals interaction at the air–water interface and by systematic time‐dependent investigation using field emission scanning electron microscopy analysis. Intrinsic residual stress due to structural joints and bending is playing a distinct role affecting the E2g mode (G band) at and away from the physical interface of GOF segments with broadening of phonon linewidth, indicating prominent phonon softening. Linescan across an interface of the GOF ‘letters’ reveals Raman shift to lower wavenumber in all cases but more so in ‘Z’ fiber exhibiting a broader region. Furthermore, intrinsic stress homogeneity is observed for ‘G’ fiber distributed throughout its curvature with negligible shift corresponding to E2g mode vibration. This article demonstrates the significance of morphology in stress distribution across the self‐assembled and ‘smart‐integrable’ GOF ‘Latin letters’. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Auxetic metamaterials have generated a great deal of interest in recent years. In this letter, a novel approach which can be used to produce such auxetic metamaterials is presented. This method involves the introduction of patterned slit perforations within a sheet/block of material in order to create systems which resemble a large variety of auxetic systems ranging from rotating units to chiral honeycombs. These perforated systems have also been shown to have the potential to exhibit giant negative Poisson's ratios. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

12.
We report the influence of electron‐beam (E‐beam) irradiation on the structural and physical properties modification of monolayer graphene (Gr), reduced graphene oxide (rGO) and graphene oxide (GO) with ultradispersed diamond (UDD) forming novel hybrid composite ensembles. The films were subjected to a constant energy of 200 keV (40 nA over 100 nm region or electron flux of 3.9 × 1019 cm−2s−1) from a transmission electron microscope gun for 0 (pristine) to 20 min with an interval of 2.5 min continuously – such conditions resemble increased temperature and/or pressure regime, enabling a degree of structural fluidity. To assess the modifications induced by E‐beam, the films were analyzed prior to and post‐irradiation. We focus on the characterization of hierarchical defects evolution using in situ transmission electron microscopy combined with selected area electron diffraction, Raman spectroscopy (RS) and Raman mapping techniques. The experiments showed that the E‐beam irradiation generates microscopic defects (most likely, interstitials and vacancies) in a hierarchical manner much below the amorphization threshold and hybrids stabilized with UDD becomes radiation resilient, elucidated through the intensity, bandwidth, and position variation in prominent RS signatures and mapping, revealing the defects density distribution. The graphene sheet edges start bending, shrinking, and generating gaps (holes) at ~10–12.5 min owing to E‐beam surface sputtering and primary knock‐on damage mechanisms that suffer catastrophic destruction at ~20 min. The microscopic point defects are stabilized by UDD for hybrids in the order of GO > rGO ≥ Gr besides geometric influence, i.e. the int erplay of curvature‐induced (planar vs curved) energy dispersion/absorption effects. Furthermore, an attempt was made to identify the nature of defects (charged vs residual) through inter‐defect distance (i.e. LD). The trends of LD for graphene‐based hybrids with E‐beam irradiation implies charged defects described in terms of dangling bonds in contrast to passivated residual or neutral defects. More importantly, they provided a contrasting comparison among variants of graphene and their hybrids with UDD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, we investigate the effect of temperature, defect, and strain rate on the mechanical properties of multi-layer graphene using coarse-grained molecular dynamics (CGMD) simulations. The simulation results reveal that the mechanical properties of multi-layer graphene tend to be less sensitive to temperature as the layer increases, but they are sensitive to the distribution and coverage of Stone-Wales (SW) defects. For the same number of defect, there is less decline in the fracture stress and Young's modulus of graphene when the defects have a regular distribution, in contrast to random distribution. In addition, Young's modulus is less influenced by temperature and defect, compared to fracture stress. Both the fracture stress and Young's modulus have little dependence on strain rate.  相似文献   

14.
The thermal stability in air of graphene synthesized by either chemical vapor deposition or mechanical cleavage is studied. It is found that single layer graphene prepared by both methods starts to show defects at ~500 °C, indicated by the appearance of a disorder‐induced Raman D peak. The defects are initially sp3 type and become vacancy like at higher temperature. On the other hand, bilayer graphene shows better thermal stability, and the D peak appears at ~600 °C. These results are quite different from those annealing in vacuum and controlled atmosphere. Raman images show that the defects in chemical vapor deposition graphene are not homogeneous, whereas those in mechanical cleavage graphene are uniformly distributed across the whole sample. The factors that affect the thermal stability of graphene are discussed. Our results could be important for guiding the future electronics process and chemical decoration of graphene. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Plasmon resonances in nanopatterned single‐layer graphene nanoribbons (SL‐GNRs), double‐layer graphene nanoribbons (DL‐GNRs) and triple‐layer graphene nanoribbons (TL‐GNRs) are studied experimentally using ‘realistic’ graphene samples. The existence of electrically tunable plasmons in stacked multilayer graphene nanoribbons was first experimentally verified by infrared microscopy. We find that the strength of the plasmonic resonance increases in DL‐GNRs when compared to SL‐GNRs. However, further increase was not observed in TL‐GNRs when compared to DL‐GNRs. We carried out systematic full‐wave simulations using a finite‐element technique to validate and fit experimental results, and extract the carrier‐scattering rate as a fitting parameter. The numerical simulations show remarkable agreement with experiments for an unpatterned SLG sheet, and a qualitative agreement for a patterned graphene sheet. We conclude with our perspective of the key bottlenecks in both experiments and theoretical models.

  相似文献   


16.
A new and quick approach is proposed to evaluate Poisson's ratio of materials with only the measured longitudinal and cross-sectional resonance frequencies from the impact-echo test on a solid circular rod of known dimension. Both the longitudinal and guided wave propagation theories are used to derive the required equations through regression analysis. Procedure to verify the adequate length of solid rod specimen to obtain a valid Poisson's ratio is described. Experimental data of four materials, concrete, steel, stainless steel and brass, illustrated with the proposed approach show satisfactory results.  相似文献   

17.
The nucleus 16 8O8 is the prototype for a large number of developments in nuclear structure theory. It is a doubly magic N=Z nucleus, light enough that an isotopic spin formalism should be a valid approximation. The Brueckner-Hartree-Fock procedure in a spherical basis should be capable of describing the gross properties of the ground state. The excited states of negative parity exhibit the characteristic low-lying ‘octupole vibrational state’ and there is a much studied ‘giant dipole region’ which should be amenable to the analysis of the ‘random phase approximation’. The first excited state is the ‘mysterious second zero’ par excellence and a great deal of work on describing it via the method of ‘deformed state admixtures’ has been carried out. The first excited state and a number of other excited states appear to support spectra reminiscent of rotational bands and the collective character of these states has been extensively studied in both the Bloch-Horowitz and α-cluster model schemes.  相似文献   

18.
Electrically conducting organic polymers represent serious candidates for some of the electronic materials of tomorrow. The role of certain charge-carrying self-localized states, such as solitons, polarons and bipolarons, in determining the nature of the optical and electronic transport properties of these conjugated polymers is well established. These self-localized states are commonly referred to as ‘defects'. Recently, the list of possible ‘defects’ in these conducting polymers has expanded to include real defects which degrade the electrical properties, but lead to other interesting and potentially useful properties, such as colour changes.  相似文献   

19.
Due to the noticeable structural similarity and being neighborhood in periodic table of group-IV and-V elemental monolayers, whether the combination of group-IV and-V elements could have stable nanosheet structures with optimistic properties has attracted great research interest. In this work, we performed first-principles simulations to investigate the elastic, vibrational and electronic properties of the carbon nitride (CN) nanosheet in the puckered honeycomb structure with covalent interlayer bonding. It has been demonstrated that the structural stability of CN nanosheet is essentially maintained by the strong interlayer σ bonding between adjacent carbon atoms in the opposite atomic layers. A negative Poisson’s ratio in the out-of-plane direction under biaxial deformation, and the extreme in-plane stiffness of CN nanosheet, only slightly inferior to the monolayer graphene, are revealed. Moreover, the highly anisotropic mechanical and electronic response of CN nanosheet to tensile strain have been explored.  相似文献   

20.
Applying nonequilibrium Green's functions in combination with the first-principles density-functional theory, we investigate electronic transport properties of an all-carbon molecular device consisting of one phenalenyl molecule and two zigzag graphene nanoribbons. The results show that the electronic transport properties are strongly dependent on the contact geometry and device's currents can drop obviously when the connect sites change from second-nearest sites from the central atom of the molecule (S site) to third-nearest sites from the central atom of the molecule (T site). More importantly, the negative differential resistance behavior is only observed on the negative bias region when the molecule connects the graphene nanoribbons through two T sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号