首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
We show that the tetrad field whose metric gives the Reissner–Nordström anti-de Sitter black holes gives the correct value of energy in Møller tetrad theory of gravitation.  相似文献   

2.
U. Kasper 《Annalen der Physik》1976,488(2):113-124
After an introduction to the formalism used throughout the paper there follows a concise presentation of the theory of fermion fields in one-tetrad gravitational theories. That presentation gives a hint to the construction of a bi-tetrad theory, the two tetrad fields being denoted by hAk and h?Ak. The tetrad field hAk. gives the Riemannian metric gkl while the tetrad field h?hAk is orthonormalized with respect to the flat metric akl. Specializing h?Ak in such a way that they have the form δAk in the preferred coordinates of Minkowski space and using a matter Lagrangian which contains these h?Ak only by the anholonomic components of the metric Christoffel symbols, we obtain a dynamical energy momentum tensor which is equal to the canonical one. Then we consider the relations of the bi-tetrad theory to other theories which are only covariant with respect to global Lorentz transformations from the beginning. As an example we formulate the main relations of the two-component neutrino theory.  相似文献   

3.
The solutions of Møller's tetrad equations are found for the three types of exact gravitational waves, for which Møller's energy-momentum complex gives vanishing densities of gravitational energy and energy current.  相似文献   

4.
We use a tetrad field that his associated metric gives Schwarzschild-AdS spacetime. This tetrad constructed from a diagonal tetrad, which is the square root of Schwarzschild-Ads metric and two other local Lorentz transformations. One of these transformations is a special case of Euler angles and the other is a boost transformation. We then apply the approach of invariant conserved currents to calculate the conserved quantity of Schwarzschild-Ads. Such approach needs a regularization to give the correct result. Therefore, a relocalization procedure is used to calculate the total conserved charge. This procedure leads to physical results in terms of total energy.  相似文献   

5.
In the frame work of non-linear generalizations of TREDER 's tetrad theory of gravitation considered in part I. a pure bimetric gravitation theory results for the LAGRANG ian Ω(1)F with ω2 = 1. The discussion of the post-NEWTON ian approximation given in I. has demonstrated that must be: ω2 = ?1 ? 2ω1. - However, a LAGRANG ian with ω1 = ? ω2 = ?1 is identical with GUPTA 's post-NEWTON ian approximation for EINSTEIN 's general relativistic LAGRANG ian. Therefore, for ω1 = ? ω2 = ? 1 the EINSTEIN effects are resulting evidently and the question discussed in I. the tetrad formalism becomes non-important.  相似文献   

6.
7.
A general definition of the spin moment is presented in the tetrad formulation of the relativistic theory of gravitation; it is based on the conditions for the invariance of the corresponding action integral relative to infinitesimal tetrad transformations (the so-called tetrad spin moment) and infinitesimal coordinate transformations (the so-called coordinate spin moment). It is shown that the tetrad formulation of the general theory of relativity (TFGTR) and the tetrad theory of gravitation (TTG) in a space of absolute parallelism lead to fundamentally different definitions of spin, since in the Riemannian geometry of the TFGTR only the coordinate spin moment is physically meaningful, whereas in the space of absolute parallelism of the TTG only the tetrad spin moment has essential significance. It is also indicated that the Pellegrini-Plebanski theory (PPT) leads to an unsatisfactory hybrid definition of spin in the form of the coordinate spin moment of the gravitational and boson fields and the tetrad spin moment of the gravitational and fermion fields, the gravitational field entering into these spin moments of the PPT with opposite signs.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 68–71, May, 1976.  相似文献   

8.
Based on the vector graviton metric theory of gravitation (VGM) suggested by one of the authors of this article, using the method of null tetrad and analytic continuation, this paper gives the metric of the rotating charged spherical mass in VGM. The result shows once again that a replacement of G by G* = G(1 - G M /2r) in general relativity will yield the corresponding result in VGM for the metric in vacuum.  相似文献   

9.
U. Kasper 《Annalen der Physik》1976,488(4):317-320
If a tetrad theory is derivable from a variational principle with a Lagrangian ?? of the form ?? = ??F+??M 6 tetrad components will be defined by the vacuum equations if the energy momentum tensor is symmetric. Therefore, we look for a realisation of a programme proposed in a little different way by TREDER according to which the 16 tetrad field equations should degenerate to 10 equations for the Riemannian metric if boson fields are the only source of the gravitational field.  相似文献   

10.
Starting from a spherically symmetric tetrad with three unknown functions of the radial coordinate and assuming a specific form of the vacuum stress-energy momentum tensor, a general solution of Møller's field equations in case of spherically symmetric nonsingular black holes is derived. The general solution is characterized by an arbitrary function and two constants of integration. The previously obtained solutions are verified as special cases of the general solution. The associated metric of the general solution gives no more than the spherically symmetric nonsingular black hole obtained before. The energy content of the general solution depends on the asymptotic behavior of the arbitrary function, and is different from the standard one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号