首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过离子交换和静电相互作用, 将银纳米粒子引入双十二烷基二甲基溴化铵(DDAB)模板中, 获得了有序的银纳米粒子多层膜. 用紫外-可见光谱(UV-Vis)、循环伏安(CV)和原子力显微镜(AFM)对其进行了表征, 并用小角X射线衍射(XRD)研究了DDAB模板和银纳米粒子多层膜的有序性结构. 以4-巯基吡啶(4-MPY)为探针分子研究了银纳米粒子多层膜在表面增强拉曼(SERS)方面的应用, 结果表明, 4-MPY吸附在银纳米粒子多层膜上呈现很强的SERS信号, 说明该多层膜可以用作高活性的SERS基底.  相似文献   

2.
Using a method of collecting nanoparticles at a water/hexane interface in a close-packed monolayer film and transferring such films onto a solid substrate, three-dimensional multilayer films of nanoparticles were formed. The packed nanoparticles were gold nanospheres (NS) with a 26 nm diameter or gold nanorods (NR) with a 31 nm diameter and 74 nm length. We investigated variations in the surface enhanced Raman scattering (SERS) intensities from such nanoparticle films as the layer compositions were changed. The films stacked with NR layers generated much higher SERS intensity than those of NS layers. The SERS intensities from both kinds of films increased as the number of layers were increased. However, when the NR layer and NS layer were stacked alternately, SERS intensity varied in a zigzag fashion. It was found that the structure of top layer plays a distinguishable role in generating strong SERS enhancement while the lower layers contribute to SERS with less dependency on structures. Interlayer coupling as well as intralayer coupling was considered in order to explain the observations.  相似文献   

3.
A gold nanoparticle film for surface-enhanced Raman scattering (SERS) was successfully constructed by an ionic surfactant-mediated Langmuir-Blodgett (LB) method. The gold film was formed by adding ethanol to a gold colloid/hexane mixture in the presence of dodecyltrimethylammonium bromide (DTAB). Consequently, gold nanoparticles (AuNPs) assembled at the water/hexane interface due to the decrease in surface charge density of AuNPs. Since DTAB binds the gold surface by a coulombic force, rather than a chemical bonding, it is easily replaced by target molecules for SERS purposes. The SERS enhancement factor of the 80 nm gold nanoparticle film was approximately 1.2 × 10(6) using crystal violet (CV) as a Raman dye. The SERS signal from the proposed DTAB-mediated film was approximately 10 times higher than that from the octanethiol-modified gold film, while the reproducibility and stability of this film compared to an octanethiol-modified film were similar. This method can also be applied to other metal nanostructures to fabricate metal films for use as a sensitive SERS substrate with a higher enhancement factor.  相似文献   

4.
Saute B  Narayanan R 《The Analyst》2011,136(3):527-532
We report the use of two different sizes of dogbone shaped gold nanoparticles as colloidal substrates for surface enhanced Raman spectroscopy (SERS) based detection of ultra-low levels of thiram, a dithiocarbamate fungicide. We demonstrate the ability to use a solution based, direct readout SERS method as a quantitative tool for the detection of ultra-low levels of thiram. The two different sizes of dogbone shaped gold nanoparticles are synthesized by using the seed-mediated growth method and characterized by using UV-visible spectroscopy and transmission electron microscopy (TEM). The smaller dogbone shaped nanoparticles have an average size of 43 ± 13 nm. The larger dogbone shaped gold nanoparticles have an average size of 65 ± 15 nm. The nanoparticle concentration is 1.25 × 10(11) nanoparticles per mL for the smaller dogbone shaped gold nanoparticles and is 1.13 × 10(11) nanoparticles per mL for the larger dogbone shaped gold nanoparticles. Different concentrations of thiram are allowed to bind to the two different sizes of dogbone shaped gold nanoparticles and the SERS spectra are obtained. From the calibration curve, the limit of detection for thiram is 43.9 ± 6.2 nM when the smaller dogbone shaped gold nanoparticles are used as colloidal SERS substrates In the case of the larger dogbone shaped gold nanoparticles, the limit of detection for thiram is 11.8 ± 3.2 nM. The lower limit of detection obtained by using the larger dogbone shaped gold nanoparticles as colloidal substrates is due to the lightning rod effect, higher contributions from the electromagnetic enhancement effect, and larger number of surface sites for thiram to bind.  相似文献   

5.
A novel method for the preparation of thin films of Ag nanoparticles is reported. Using mercaptoacetic acid as the stabilizing agent, AgI nanoparticles were prepared in aqueous solution. And based on electrostatic interactions, the thiol-passivated AgI nanoparticles were assembled in a self-assembled film by alternative deposition with a cationic polyelectrolyte. Then the AgI nanoparticles in the composite film were reduced by NaBH(4), which resulted in the formation of a thin film of Ag nanoparticles. UV-visible spectra and X-ray photoelectron spectroscopy data confirmed the transformation from AgI to Ag. Atomic force microscopy (AFM) showed that the formed Ag nanoparticles distributed on the film homogeneously. Surface-enhanced Raman spectroscopy (SERS) measurement indicated that the prepared thin films could be used as effective SERS substrates. The reduction process was also carried out by UV light at selective surface regions, which resulted in the formation of patterned nanoparticle arrays.  相似文献   

6.
Stable colloidal solutions of gold nanoparticles surface-derivatized with a thiol monolayer have been prepared using two-phase (water–nitrobenzene) reduction of AuCl4 by sodium borohydride in the presence of 2-mercapto-3-n-octylthiophene (MOT). This kind of surface-functionalized gold nanoparticles can be easily incorporated into the poly(3-octylthiophene) (POT) films on electrode in the process of electrochemical polymerization leading to POT–gold nanoparticle (POT–Au) composite films. Scanning probe microscopy (SPM) and X-ray photoelectric spectroscopy (XPS) have been employed to characterize the surface-derivatized particles and the resulting films. The method of incorporation of nanoparticles into polymer by surface-derivatization and in situ polymerization can also be employed to prepare many other polymer–nanoparticle compostie materials.  相似文献   

7.
Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic mixture experiment wherein the molecule hexadecylaniline present in the organic phase leads to electrostatic complexation and reduction of aqueous chloroaurate ions, capping of the gold nanoparticles thus formed and phase transfer of the now hydrophobic particles into the organic phase. Organization of gold nanoparticles at the air-water interface is followed by surface pressure—area isotherm measurements while the formation of multilayer films of the nanoparticles by the Langmuir-Blodgett technique is monitored by quartz crystal microgravimetry, UV-Vis spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy.  相似文献   

8.
通过分子自组装方法制备4,4′-二硫联吡啶(PySSPy)单分子膜修饰的金电极. 利用所形成的对巯基吡啶自组装单分子膜(SAMs)作为偶联层进行金纳米粒子有序膜的组装. 对该纳米粒子组装体系进行Raman光谱测定, 得到了具有良好信噪比的对巯基吡啶单分子膜的表面增强拉曼散射(SERS)光谱. 在此基础上, 进一步采用电化学现场SERS光谱技术研究了该纳米粒子组装体系的SERS光谱随电位变化的规律. 在该体系稳定的电位范围内表征对巯基吡啶单分子膜的特征谱峰1011与1093 cm-1、1575与1610 cm-1以及1206与1215 cm-1这三对谱峰其强度随着所施加电位的改变呈现出明显的规律性. 分析表明, 偶联单分子层中吡啶环芳香性随着所施加电位的改变而有规律地变化是SERS光谱特征改变的内在原因.  相似文献   

9.
Template synthesis of various morphological gold colloidal nanoparticles using a thermoresponsive and pH-responsive coordination triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide) is studied. The template morphology of the thermoresponsive and pH-responsive coordination triblock copolymer, which can be tuned by simply changing the pH or temperature of the triblock copolymer aqueous solution, ranges from single chains to core-corona micelles and further to micellar clusters. Various morphological gold colloidal nanoparticles such as discrete gold nanoparticles, gold@polymer core-shell nanoparticles, and gold nanoparticle clusters are synthesized on the corresponding template of the triblock copolymer by first coordination with gold ions and then reduction by NaBH4. All three resultant gold colloidal nanoparticles are stable in aqueous solution, and their sizes are 2, 10, and 7 nm, respectively. The gold@polymer core-shell nanoparticles are thermoresponsive. The gold nanoparticle cluster has a novel structure, and each one holds about 40 single gold nanoparticles.  相似文献   

10.
Gold nanoparticle and gold/semiconductor nanocomposite thin films have been deposited using aerosol assisted chemical vapor deposition (CVD). A preformed gold colloid in toluene was used as a precursor to deposit gold films onto silica glass. These nanoparticle films showed the characteristic plasmon absorption of Au nanoparticles at 537 nm, and scanning electron microscopic (SEM) imaging confirmed the presence of individual gold particles. Nanocomposite films were deposited from the colloid concurrently with conventional CVD precursors. A film of gold particles in a host tungsten oxide matrix resulted from co-deposition with [W(OPh)(6)], while gold particles in a host titania matrix resulted from co-deposition with [Ti(O(i)Pr)(4)]. The density of Au nanoparticles within the film could be varied by changing the Au colloid concentration in the original precursor solution. Titania/gold composite films were intensely colored and showed dichromism: blue in transmitted light and red in reflected light. They showed metal-like reflection spectra and plasmon absorption. X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis confirmed the presence of metallic gold, and SEM imaging showed individual Au nanoparticles embedded in the films. X-ray diffraction detected crystalline gold in the composite films. This CVD technique can be readily extended to produce other nanocomposite films by varying the colloids and precursors used, and it offers a rapid, convenient route to nanoparticle and nanocomposite thin films.  相似文献   

11.
A novel method for the fabrication of gold nanoparticle multilayer films based on the covalent-bonding interaction between boronic acid and polyols, poly(vinyl alcohol) (PVA), was developed. The multilayer buildup was monitored by UV-vis absorbance spectroscopy, which showed a linear increase of the film absorbance with the number of adsorbed Au layers and indicated the stepwise and uniform assembling process. The atomic force microscopy (AFM) image showed that a compact gold multilayer thin film was successfully assembled. The residual boronic acid group on the surface of thin film could incorporate glycosylated-protein horseradish peroxidase (HRP), and good catalytic activity for H2O2 could be observed.  相似文献   

12.
通过湿法化学合成基于SiO2胶体晶体的大面积有序Au/Ag纳米碗(Au/AgNB)阵列。首先,在玻璃基板上以3D SiO2胶体晶体作为模板。然后,在Au纳米颗粒(AuNP)种子的帮助下,通过原位生长方法在模板上沉积一层Au纳米壳(AuNS)。再通过HCHO还原Ag+使AuNS表面进一步沉积Ag纳米壳,形成Ag/Au双纳米壳(Ag/AuNS)阵列。通过丙烯酸酯改性双向取向聚丙烯(BOPP)方便地获得了单层有序反转Ag/AuNB阵列。这种有序Au/AgNB阵列具有更佳的表面增强拉曼散射(SERS)活性,其SERS分析增强因子(AEF)可达2.23×107。  相似文献   

13.
通过湿法化学合成基于SiO2胶体晶体的大面积有序Au/Ag纳米碗(Au/AgNB)阵列。首先,在玻璃基板上组装3D SiO2胶体晶体作为模板。然后,以Au纳米颗粒(AuNP)为种子,通过原位生长法在SiO2模板上沉积一层Au纳米壳(AuNS)。再通过HCHO还原Ag+成Ag0,进一步在AuNS表面沉积Ag纳米壳,形成Ag/Au双纳米壳(Ag/AuNS)阵列。最后通过丙烯酸酯改性双向取向聚丙烯(BOPP)膜方便地获得了单层有序反转Ag/AuNB阵列。这种有序Au/AgNB阵列具有更佳的表面增强拉曼散射(SERS)活性,其SERS分析增强因子(AEF)可达2.23×107。  相似文献   

14.
Faulds K  Smith WE  Graham D  Lacey RJ 《The Analyst》2002,127(2):282-286
Methods of detection of amphetamine sulfate using surface enhanced Raman scattering (SERS) from colloidal suspensions and vapour deposited films of both silver and gold are compared. Different aggregating agents are required to produce effective SERS from silver and gold colloidal suspensions. Gold colloid and vapour deposited gold films give weaker scattering than the equivalent silver substrates when high concentrations of drug are analysed but they also give lower detection limits, suggesting a smaller surface enhancement but stronger surface adsorption. A 10(-5) mol dm(-3) solution (the final concentration after addition of colloid was 10(-6) mol dm(-3)) of amphetamine sulfate was detected from gold colloid with an RSD of 5.4%. 25 microl of the same solution could be detected on a roughened gold film. The intensities of the spectra varied across the film surface resulting in relatively high RSDs. The precision was improved by averaging the scattering from several points on the surface. An attempt to improve the detection limit and precision by concentrating a suspension of gold colloid and amphetamine sulfate in aluminium wells did not give effective quantitation. Thus, positive identification and semi-quantitative estimation of amphetamine sulfate can be made quickly and easily using SERS from suspended gold colloid with the appropriate aggregating agents.  相似文献   

15.
Colloidal Au/Ag multilayer films were prepared by alternate assembly of Au nanoparticles with a size of 5 +/- 1.2 nm and Ag nanoparticles with a size of 10 +/- 2.4 nm by using 1,5-pentanedithiol as cross-linker. Nanoporous gold films with a ligament size of 26.7 +/- 4.6 nm were then prepared by selective dissolution of sacrificial templates of silver particles in colloidal Au/Ag multilayers. The complete dissolution of Ag particles in colloidal Au/Ag multilayers in a mixture solution of 3.0 mM HAuCl(4) and 3 M NaCl took place at room temperature without damage of the colloidal Au film. This method to prepare nanoporous gold films was further extended to the preparation of nanoporous gold nanotubes by depositing colloidal Au/Ag film on the inner wall of anodic aluminum oxides (AAO) followed by dissolution of colloidal Ag and removal of AAO templates.  相似文献   

16.
本文以高能量的超声波作用于溶胶/疏水溶剂两相体系, 使溶胶相中的纳米颗粒先被加速吸附到乳液油滴的小表面. 随着乳液油滴向上转移, 在界面处破乳, 纳米颗粒就被释放到水/油界面上来, 形成自组装纳米薄膜. 尽管这种组装机制尚不完全清楚(如超声波是否确实如预期那样可以提高纳米粒子的动能), 但这种方法不需要预先对纳米粒子表面疏水修饰, 也不需向体系中添加表面活性有机小分子或电解质等诱导剂, 可快速有效制备表面“洁净”的纳米粒子薄膜, 并可用作高活性SERS基底.  相似文献   

17.
When a solid substrate with negative surface charges was placed in an aqueous didodecyldimethylammonium bromide (DDAB) vesicle dispersion, the cationic surfactant DDAB with two hydrocarbon chains could be assembled into the biomembrane-like tail-to-tail double-layer structure on the solid surface with the positively charged head groups toward outside, making the surface charge reverse from negative to positive. After the solid substrate with DDAB was immersed in a hemoglobin (Hb) solution at pH 9.0, the negatively charged Hb was adsorbed on the surface of DDAB layer by electrostatic attraction, forming a DDAB/Hb film. By repeating this adsorption cycle, the {DDAB/Hb}(n) layer-by-layer films were assembled on solid surfaces, which was confirmed by UV-vis spectroscopy, quartz crystal microbalance (QCM), and cyclic voltammetry (CV). The stable {DDAB/Hb}(n) films assembled on pyrolytic graphite (PG) electrodes showed two pairs of nearly reversible redox peaks at about -0.22 and -1.14 V vs SCE in pH 7.0 buffers, characteristic of the Hb heme Fe(III)/Fe(II) and Fe(II)/Fe(I) redox couples, respectively. The direct electrochemistry of Hb in the films could be used to electrocatalyze reduction of various substrates. UV-vis and IR spectroscopic results and comparison experiments with {DDAB/hemin}(n) films indicate that Hb in the {DDAB/Hb}(n) films essentially retains its native structure. Atomic force microscopy (AFM) was used to characterize the morphology of the films with different outermost layers.  相似文献   

18.
In this work, the role of nanoparticle surface charge in surface-enhanced Raman scattering (SERS) is examined for the common case of measurements made in colloidal solutions of Ag and Au. Average SERS intensities obtained for several analytes (salicylic acid, pyridine, and 2-naphthalenethiol) on Ag and Au colloids are correlated with the pH and zeta potential (zeta) values of the nanoparticle solutions from which they were recorded. The consequence of the electrostatic interaction between the analyte and the metallic nanoparticle is stressed. The zeta potentials of three commonly used colloidal solutions are reported as a function of pH, and a discussion is given on how these influence SERS intensity. Also examined is the importance of nanoparticle aggregation (and colloidal solution collapse) in determining SERS intensities, and how this varies with the pH of the solution. The results show that SERS enhancement is highest at zeta potential values where the colloidal nanoparticle solutions are most stable and where the electrostatic repulsion between the particles and the analyte molecules is minimized. These results suggest some important criteria for consideration in all SERS measurements and also provide important insights into the problem of predicting SERS activities for different molecular systems.  相似文献   

19.
Immobilization of polyclonal antibodies was studied on native screen-printed graphite electrodes (SPEs) and variously modified electrodes. SPEs coated with didodecylammonium bromide (DDAB, a synthetic membranelike substance) films with gold nanoparticles gave the maximum electrochemical response. DDAB and gold nanoparticle films strongly changed the surface morphology, and the electrochemical signal became more intense and stable. This immobilization method increased the concentration of immobilized antibodies while their activity was retained. The detection limit of the enzymatic label (horseradish peroxidase) was 0.02 ng/L of sample.  相似文献   

20.
In this paper, we report a facile method for the fabrication of type-I collagen-silver nanoparticles (Ag NPs) multilayered films by utilizing type-I collagen as a medium. These samples were characterized by UV-vis spectra photometer, atomic force microscopy, scanning electron microscopy, and Fourier transform IR spectrum. Experimental results show that collagen molecules serve as effective templates to assemble Ag NPs into multilayer films. These samples exhibit high surface-enhanced Raman scattering (SERS) enhancement abilities. For example, EF(nu(cc)) (EF means enhancement factor) at 1592 cm(-1) in the SERS spectrum of 4-aminothiophenol on seven-layered substrates was calculated to be 1.81 x 10(5), which is larger than that reported in several literatures. The EFs increased as the layer number of multilayer films increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号