首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
电磁式振动能量捕获技术从单稳态系统发展到多稳态系统,拓宽了响应频带,增大了输出电压,能够获得较好的发电性能.以附加线性振子的双稳态电磁式振动能量捕获器为研究对象,主要研究了势阱深度对双稳态系统发电性能的影响,并基于最优发电性能下的势阱深度,研究了双稳态系统结构参数中质量比与调频比对系统发电性能的影响.通过数值仿真结果说明,在外部激励频率为低频时:势阱深度较大时,双稳态系统的振子只能在一个阱内发生小幅振动运动;当势阱深度小到一定程度时,双稳态系统的振子跨过势垒在两个阱间内发生大幅混沌运动或周期运动,其优于小幅振动运动时的平均输出功率.通过数值模拟,得到双稳态系统具有较高的发电性能下的最优质量比、调频比以及阻尼比参数.  相似文献   

2.
刚柔耦合系统动力学建模及分析   总被引:11,自引:1,他引:10  
准确预测经历大范围刚体运动和弹性变形的柔性体的行为,是当前柔性多体系统动力学领域关注的主要课题.基于线性理论的传统方法由于无法计及动力刚化效应,导致在许多实际应用中得到错误的结果.本文从离心力势场的概念出发,应用Hamilton原理建立了具有动力刚化效应的刚柔耦合系统的运动方程,证明了该方程解的周期性,并采用了Frobenius方法给出了其精确解的一般形式.通过算例分析了刚体运动对弹性运动的模态和频率的影响.  相似文献   

3.
采用集中质量法,建立了多间隙二级齿轮系统的五自由度非线性振动模型.模型考虑了各齿轮副间变刚度、齿侧间隙、支承间隙以及传动误差等非线性因素,推导出系统量纲振动微分方程,并利用分岔图、Poincaré截面图,全面地分析了系统转速、阻尼比对系统分岔特性的影响.结果发现系统在各种非线性因素的综合影响下,表现出丰富复杂的分岔特性.系统随着参数的变化先后出现短周期运动、长周期运动、拟周期运动及混沌运动.在不同阻尼比下,系统随着转速的逐渐减小,由稳定的周期1运动,倍化分岔变为稳定的周期2运动,再经过Hopf分岔变为拟周期运动,通过激变又变为稳定的周期1运动,最终通过Hopf分岔-锁相进入混沌.随着转速的逐渐增大,系统随阻尼比变化的混沌运动范围减小,出现稳定的周期1运动、长周期和拟周期运动,并且长周期和拟周期运动范围逐渐变小而稳定的周期1运动的范围逐渐变大.  相似文献   

4.
用独立变量表示的约束Birkhoff系统的运动稳定性   总被引:1,自引:1,他引:0  
首先提出Pfaff-Birkhoff-D'Alembert原理,并由此原理导出约束Birkhoff系统用独立交量表示的运动方程;其次建立系统的受扰运动微分方程;最后利用直接法和一次近似理论得到系统运动稳定性的一些判据.  相似文献   

5.
考虑系统平衡状态的稳定性。给出系统的运动方程及其平衡状态的存在性条件,得到系统平衡状态的一些稳定性判据,最后举例说明其应用。  相似文献   

6.
运用基于颗粒运动分解思想的硬球模型模拟了气固两相流动系统的基本特征,讨论了操作条件对其的影响,其模拟结果表明:与国际上现有 用型模型相比,基于颗粒运动分解思想的硬球模型具有更为真实的优点,它能够定性而形象地复现气固流化系统的实验特征。  相似文献   

7.
Чаплыгин系统平衡状态的稳定性   总被引:1,自引:0,他引:1  
考虑Чаплыгин系统平衡状态的稳定性,给出Чаплыгин系统的运动方程及其平衡状态的存在性条件,得到Чаплыгин系统平衡状态的一些稳定性判据,最后举例说明其应用。  相似文献   

8.
《大学数学》2015,(4):64-69
利用《微分积分法软件》和微分方程定性理论研究了一类二维非线性自治系统的动力学性质.探讨了五个平衡点的存在性、稳定性和极限集等一些几何性质,并通过描绘系统的图像解,得到两个重合的横置的葫芦形极限环.在解题的过程中首次发现了一个反常的现象:此系统所描述的周期性运动其周期的大小随自变量的微分的减小而增大.  相似文献   

9.
研究非完整系统动力学的一类逆问题·给出非完整系统的运动方程及其显式,考虑一类仅受齐次非完整约束的力学系统的Szebehely问题,研究已知一类第一积分的一般非完整系统的情形·最后举例说明其应用·  相似文献   

10.
刚性约束转子系统单点碰摩周期n运动的存在性   总被引:2,自引:0,他引:2  
对一类刚性约束转子系统的碰摩映射讨论了单点碰摩周期2运动的存在性,给出其存在的参数范围和计算公式,并用实例验证本方法的正确性,最后研究了单点碰摩周期n运动的不存在性。  相似文献   

11.
A geometric formulation is adopted for a nonlinear magnetohydrodynamic system wherein the magnetic field is aligned with the direction of the binormal to the streamlines. It is established that, for complex‐lamellar motion, if the divergence of the binormal field vanishes then the fluid streamlines are geodesics on generalized helicoids. The latter constitute the Maxwellian surfaces and the magnetic lines are helices thereon. The key geometric and physical parameters of the magneto‐hydrodynamic motion are all determined in terms of the torsion τ of the streamlines. A superposition principle is presented whereby a more general class of magnetohydrodynamic motions may be isolated with streamlines and magnetic lines no longer restricted to be geodesics or parallels on the Maxwellian surfaces. Moreover, the class so generated is not subject to the complex‐lamellar constraint. In an appendix, a particular reduction is obtained to the integrable Da Rios system.  相似文献   

12.
The problem of the motion of a magnetic solid in a constant uniform magnetic field, taking gyromagnetic effects into account, is considered. The equations of motion are derived, the Hamiltonian structure is studied, and the cases of integrability indicated. Certain classes of stationary motions are studied and their stability examined.

The gyromagnetic effects arise because the electrons have magnetic and mechanical spin moments /1/. The rotation of the body causes it to become magnetized (the Barnett effect) and when a freely suspended body is magnetized, it begins to rotate (the Einsteinde Haas effect). It is found that gyromagnetic phenomena must be taken into account when analysing the motion of gyroscopic precision systems.  相似文献   


13.
A holonomic mechanical system with variable masses and cyclic coordinates is considered. Such a system can have generalized steady motions in which the positional coordinates are constant and the cyclic velocities under the action of reactive forces vary according to a given law. Sufficient Routh-Rumyantsev-type conditions for the stability of such motions are determined. The problem of stabilizing a given translational-rotational motion of a symmetric satellite in which its centre of mass moves in a circular orbit and the satellite executes rotational motion about its axis of symmetry is solved.  相似文献   

14.
The motion of an autonomous Hamiltonian system with two degrees of freedom near its equilibrium position is considered. It is assumed that, in a certain region of the equilibrium position, the Hamiltonian is an analytic and sign-definite function, while the frequencies of linear oscillations satisfy a 3:1 ratio. A detailed analysis of the truncated system, corresponding to the normalized Hamiltonian is given, in which terms of higher than the fourth order are dropped. It is shown that the truncated system can be integrated in terms of Jacobi elliptic functions, and its solutions describe either periodic motions or motions that are asymptotic to periodic motions, or conventionally periodic motions. It is established, using the KAM-theory methods, that the majority of conventionally periodic motions are also preserved in the complete system. Moreover, in a fairly small neighbourhood of the equilibrium position, the trajectories of the complete system, which are not conventionally periodic, form a set of exponentially small measure. The results of the investigation are used in the problem of the motion of a dynamically symmetrical satellite in the region of its cylindrical precession.  相似文献   

15.
Chaotic motion of an intermittency type of the impact oscillator appears near segments of saddle-node stability boundaries of subharmonic motions with two different impacts in motion period, which is n multiple (n3) of excitation period. Chaotic motion arises due to an additional impact, which interrupts the process of instability. It is proved and shown by numerical simulations of the system motion. More detail characteristics of the intermittency chaos are evaluated. Described phenomena present a non-usual example, when transition cross special segments of saddle-node stability boundaries of subharmonic impact motions is reversible.  相似文献   

16.
We consider an electrically charged particle simultaneously interacting with a magnetic monopole and a dual monopole in the momentum space. It is a prototype of a three-dimensional system involving noncommuting and/or noncanonical variables but having geometric and also gauge symmetries in both the position and momentum spaces. We discuss the main features of the motions and conservation laws and the analogies to the case of planar motion.  相似文献   

17.
The Poincare mapping and the corresponding mapping sections for global motions in a linear system possessing a dead-zone restoring force are introduced through switching planes pertaining to two constraints. The global periodic motions based on the Poincare mapping are determined, and the eigenvalue analysis for the stability and bifurcation of periodic motion is carried out. Global chaos in such a system is investigated numerically from the unstable global periodic motions analytically determined. The bifurcation scenario with varying parameters is presented. The mapping structures of periodic and chaotic motions are discussed. The Poincare mapping sections for global chaos are given for illustration. The grazing phenomenon embedded in chaotic motion is observed in this investigation.  相似文献   

18.
We examine the motions of an autonomous Hamiltonian system with two degrees of freedom in a neighborhood of an equilibrium point at a 1:1 resonance. It is assumed that the matrix of linearized equations of perturbed motion is reduced to diagonal form and the equilibrium is linearly stable. As an illustration, we consider the problem of the motion of a dynamically symmetric rigid body (satellite) relative to its center of mass in a central Newtonian gravitational field on a circular orbit in a neighborhood of cylindrical precession. The abovementioned resonance case takes place for parameter values corresponding to the spherical symmetry of the body, for which the angular velocity of proper rotation has the same value and direction as the angular velocity of orbital motion of the radius vector of the center of mass. For parameter values close to the resonance point, the problem of the existence, bifurcations and orbital stability of periodic rigid body motions arising from a corresponding relative equilibrium of the reduced system is solved and issues concerning the existence of conditionally periodic motions are discussed.  相似文献   

19.
A two-degree-of-freedom impact oscillator is considered. The maximum displacement of one of the masses is limited to a threshold value by the symmetrical rigid stops. Impacts between the mass and the stops are described by an instantaneous coefficient of restitution. Dynamics of the system is studied with special attention to periodic-impact motions and bifurcations. Period-one double-impact symmetrical motion and transcendental impact Poincaré map of the system is derived analytically. Stability and local bifurcations of the period-one double-impact symmetrical motions are analyzed by using the impact Poincaré map. The Lyapunov exponents in the vibratory system with impacts are calculated by using the transcendental impact map. The influence of the clearance and excitation frequency on symmetrical double-impact periodic motion and bifurcations is analyzed. A series of other periodic-impact motions are found and the corresponding bifurcations are analyzed. For smaller values of clearance, period-one double-impact symmetrical motion usually undergoes pitchfork bifurcation with decrease in the forcing frequency. For large values of the clearance, period-one double-impact symmetrical motion undergoes Neimark–Sacker bifurcation with decrease in the forcing frequency. The chattering-impact vibration and the sticking phenomena are found to occur in the region of low forcing frequency, which enlarges the adverse effects such as high noise levels, wear and tear and so on. These imply that the dynamic behavior of this system is very rich and complex, varying from different types of periodic motions to chaos, even chattering-impacting vibration and sticking. Chaotic-impact motions are suppressed to minimize the adverse effects by using external driving force, delay feedback and feedback-based method of period pulse.  相似文献   

20.
In this paper, periodic motions for a simplified brake system under a periodical excitation are investigated, and the motion switchability on the discontinuous boundary is discussed through the theory of discontinuous dynamical systems. The onset and vanishing of periodic motions are discussed through the bifurcation and grazing analyses. Based on the discontinuous boundary, the switching planes and the basic mappings are introduced, and the mapping structures for periodic motions are developed. From the mapping structures, the periodic motions are analytically predicted and the corresponding local stability and bifurcation analysis is completed. Periodic motions will be illustrated for verification of analytical predictions. In addition, the relative force distributions along the displacement are illustrated for illustrations of the analytical conditions of motion switchability on the discontinuous boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号