首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
姜舸  沈爱金  郭志谋  李秀玲  梁鑫淼 《色谱》2015,33(9):929-933
糖类化合物因其极性强,在反相色谱模式下保留较弱,因此常用亲水作用色谱(HILIC)对其进行分离分析。本文以9种糖类化合物的混合物为研究对象,系统评价了其在Click TE-Cys亲水色谱柱上的保留行为,分别考察了流动相中有机相比例和盐浓度对其保留行为的影响。实验证明:9种糖类化合物按极性由小到大的顺序依次从Click TE-Cys色谱柱上被洗脱下来。随着有机相比例的增加,糖类化合物的保留增强;随着盐浓度的增加,除唾液酸外的糖类化合物的保留增强。用顶替-吸附液相相互作用模型模拟了糖类化合物在HILIC上的保留行为,采用保留方程ln k=a+blnCB+cCB描述HILIC的保留规律,对HILIC的保留值进行多元线性回归。结果表明糖类化合物在Click TE-Cys色谱柱上的保留行为符合HILIC的保留规律。  相似文献   

2.
糖芯片研究     
糖芯片是继基因芯片、蛋白质芯片、组织芯片等之后发展起来的一种很有前景的生物检测技术,具有检测样品用量少、特异性高、高通量等优点,可以大大提高糖化学研究的效率。本文介绍利用共价结合法和非共价吸附法制备二维糖芯片,利用聚合反应制备三维凝胶芯片以及糖芯片在凝集素功能研究、病毒转染机制研究、细菌检测和免疫学研究等方面的应用,最后对糖芯片今后的发展进行了展望。  相似文献   

3.
The carbohydrate portions of the Sindbis virus glycoproteins were compared with the carbohydrate portions of cell surface glycoproteins from uninfected host cells. Comparisons of the size of glycopeptides were made using gel filtrations. Comparisons of sugar linkages were made by methylation analysis. The conclusion was that the Sindbis carbohydrate is similar to a portion of the host carbohydrate. Thus, the Sindbis carbohydrate structures appear to be structures normally made in the uninfected host cell, but which are added to the Sindbis glycoproteins in virus-infected cells.  相似文献   

4.
Accumulated carbohydrate in microalgae is promising feedstock for bioethanol fermentation. Selection of suitable cultivation conditions in semi-continuous cultivation is critical to achieve a high carbohydrate productivity. In the current study, the effects of macro-nutrient (nitrogen, phosphorus, and sulfur) limitations and light intensity were evaluated for the carbohydrate accumulations of Chlorella sp. AE10 under 10% CO2 conditions. It was shown that nitrogen limitation and high light intensity were effective for improving carbohydrate productivity. The average carbohydrate and biomass productivity in semi-continuous cultivation with 1/4 N medium and 1000 μmol photons m?2 s?1 was 0.673 and 0.93 g L?1 day?1, respectively. Sulfur and phosphorus limitations could improve the carbohydrate content but they could not enhance the carbohydrate productivity. The cell cycle progression and chlorophyll a were investigated using flow cytometry (FCM). The results showed that macro-nutrient limitation and high light intensity indeed influenced cell cycle progression and led to the formation of polyploid cells along with the carbohydrate accumulation in a certain range. FCM was rapid and accurate method to investigate the operation conditions why 1/4 N, 2 days as a cycle, and high light intensity were optimal ones. In addition, the remaining high level of photosynthesis activity was also important for achieving a high carbohydrate productivity. Dynamic tracking of carbohydrate accumulation is helpful for establishment of a semi-continuous cultivation for enhancing carbohydrate productivity in microalgae.  相似文献   

5.
Carbohydrate analysis has traditionally been viewed as a specialty science, performed only in a few well-established laboratories using conventional carbohydrate analysis technology (e.g. NMR, gas chromatography-mass spectroscopy, high-performance liquid chromatography, capillary electrophoresis) combined with the specialized technical training that has been essential for accurate interpretation of the data. This tradition of specialized laboratories is changing, due primarily to an increase in the number of scientists performing routine carbohydrate analysis. As a result, many scientists who are not trained in traditional carbohydrate analytical techniques now need to be able to perform accurate carbohydrate analysis in their own laboratories. This has created a need for technically simple and inexpensive methods of carbohydrate analysis. In this review, we present application vignettes of a technically simple, yet analytically powerful method called fluorophore-assisted carbohydrate electrophoresis (FACE). FACE can be used for performing routine oligosaccharide profiling, monosaccharide analysis, and sequencing of a variety of carbohydrates.  相似文献   

6.
糖芯片的研究进展   总被引:1,自引:0,他引:1  
邹兰  黄志纾  黄国贤  古练权 《有机化学》2009,29(11):1689-1699
糖芯片是生物芯片的一种,如基因芯片对于基因研究和蛋白质芯片对于蛋白质组研究一样,糖芯片在糖组学的研究中同样也将扮演重要的角色。本文系统介绍了糖芯片的制备流程及其应用,以及在糖芯片研发开发中的技术障碍。  相似文献   

7.
Carbohydrate-protein interactions play important biological roles in living organisms. For the most part, biophysical and biochemical methods have been used for studying these biomolecular interactions. Less attention has been given to the development of high-throughput methods to elucidate recognition events between carbohydrates and proteins. In the current effort to develop a novel high-throughput tool for monitoring carbohydrate-protein interactions, we prepared carbohydrate microarrays by immobilizing maleimide-linked carbohydrates on thiol-derivatized glass slides and carried out lectin binding experiments by using these microarrays. The results showed that carbohydrates with different structural features selectively bound to the corresponding lectins with relative binding affinities that correlated with those obtained from solution-based assays. In addition, binding affinities of lectins to carbohydrates were also quantitatively analyzed by determining IC(50) values of soluble carbohydrates with the carbohydrate microarrays. To fabricate carbohydrate chips that contained more diverse carbohydrate probes, solution-phase parallel and enzymatic glycosylations were performed. Three model disaccharides were in parallel synthesized in solution-phase and used as carbohydrate probes for the fabrication of carbohydrate chips. Three enzymatic glycosylations on glass slides were consecutively performed to generate carbohydrate microarrays that contained the complex oligosaccharide, sialyl Le(x). Overall, these works demonstrated that carbohydrate chips could be efficiently prepared by covalent immobilization of maleimide-linked carbohydrates on the thiol-coated glass slides and applied for the high-throughput analyses of carbohydrate-protein interactions.  相似文献   

8.
Chiral benzazaborole-catalyzed regioselective sulfonylations of unprotected carbohydrate derivatives have been developed. This methodology enables direct regioselective functionalization of the secondary OH group in carbohydrate in the presence of the primary OH group. By using the chiral organoboron catalysis, kinetic resolution of the carbohydrate derivatives was also achieved.  相似文献   

9.
Glycobiology opens a wide field for new therapeutic approaches. However, the complexity and unavailability of various carbohydrate test compounds has excluded this class of natural products from modern screening systems. Alternatively, glycomimetics are considered to be more drug-like candidates for development. By means of multicomponent condensations (MCCs) utilizing suitable carbohydrate synthons, rapid and effective access to glycoconjugate libraries can be obtained. The flexibility of MCCs allows the assembly of diverse carbohydrate containing libraries. It may be assumed that MCCs containing carbohydrate moieties will play an important role in glycomimetic chemistry and biology.  相似文献   

10.
Hierarchical carbohydrate architectures serve multiple roles in nature. Hardly any correlations between the carbohydrate chemical structures and the material properties are available due to the lack of standards and suitable analytic techniques. Therefore, designer carbohydrate materials remain highly unexplored, as compared to peptides and nucleic acids. A synthetic D -glucose disaccharide, DD , was chosen as a model to explore carbohydrate materials. Microcrystal electron diffraction (MicroED), optimized for oligosaccharides, revealed that DD assembled into highly crystalline left-handed helical fibers. The supramolecular architecture was correlated to the local crystal organization, allowing for the design of the enantiomeric right-handed fibers, based on the L -glucose disaccharide, LL , or flat lamellae, based on the racemic mixture. Tunable morphologies and mechanical properties suggest the potential of carbohydrate materials for nanotechnology applications.  相似文献   

11.
Primary carbohydrate amines at primary and secondary carbons are alkylated by alcohols in the presence of [Cp*IrCl(2)](2). When primary carbohydrate alcohols are used as the coupling partners and in the presence of Cs(2)CO(3), amine-linked pseudodisaccharides are obtained. Secondary carbohydrate alcohols are unaffected under these conditions, which allows regioselective reactions.  相似文献   

12.
An information transfer strategy was developed for the visualization of carbohydrate expression by the competition of a primary cell-adhered solid surface with a carbohydrate assembled surface as an artificial secondary surface for one species. The strategy could be effectively utilized for in situ monitoring of dynamic carbohydrate expression on an adhesive cell surface.  相似文献   

13.
A carbohydrate–anion recognition system in nonpolar solvents is reported, in which complexes form at the B‐faces of β‐D ‐pyranosides with H1‐, H3‐, and H5‐cis patterns similar to carbohydrate–π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate–anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH ??? A? hydrogen bonds between the binding partners and is related to electron‐withdrawing groups of the carbohydrates as well as increased hydrogen‐bond‐accepting capability of the anions.  相似文献   

14.
Carbohydrate microarrays are an emerging tool for the high‐throughput screening of carbohydrate–protein interactions that represent the basis of many biologically and medicinally relevant processes. The crucial step in the preparation of carbohydrate arrays is the attachment of carbohydrate probes to the surface. We examined the Diels–Alder reaction with inverse‐electron‐demand (DARinv) as an irreversible, chemoselective ligation reaction for that purpose. After having shown the efficiency of the DARinv in solution, we prepared a series of carbohydrate–dienophile conjugates that were printed onto tetrazine‐modified glass slides. Binding experiments with fluorescently labeled lectins proved successful and homogeneous immobilization was achieved by the DARinv. For immobilization of nonfunctionalized reducing oligosaccharides we developed a bifunctional chemoselective linker that enabled the attachment of a dienophile tag to the oligosaccharides through oxime ligation. The conjugates obtained were successfully immobilized on glass slides. The presented strategies for the immobilization of both synthetic carbohydrate derivatives and unprotected reducing oligosaccharides facilitate the preparation of high‐quality carbohydrate microarrays by means of the chemoselective DARinv. This concept can be readily adapted for the preparation of other biomolecule arrays.  相似文献   

15.
The synthesis of novel hyperbranched carbohydrate polymers, prepared by the ring-opening multibranching polymerizations of anhydro and dianhydro sugars, is described. The hyperbranched carbohydrate polymers were formed by the cationic polymerization of 1,6-anhydro-beta-D-hexopyranose, 1,4-anhydrotetritol, 2,3-anhydrotetritol, and 1,2:5,6-dianhydro-D-mannitol. These polymerizations proceeded without gelation to produce water-soluble hyperbranched carbohydrate polymers with controlled molecular weights and narrow polydispersities. The values for the degree of branching of the polymers were in the range of 0.28-0.50. The polymerization method, which proceeds through a ring-opening reaction by a proton-transfer reaction mechanism, is a facile method leading to a spherical carbohydrate polymer with a high degree of branching.  相似文献   

16.
In recent years the interest in tools for investigating carbohydrate–protein (CPI) and carbohydrate‐carbohydrate interactions (CCI) has increased significantly. For the investigation of CPI and CCI, several techniques employing different linking methods are available. Surface plasmon resonance (SPR) imaging is a most appropriate tool for analyzing the formation of self‐assembled monolayers (SAM) of carbohydrate derivatives, which can mimic the glycocalyx. In contrast to the SPR imaging methods used previously to analyze CPI and CCI, the novel approach reported herein allows a facile and rapid synthesis of linker spacers and carbohydrate derivatives and enhances the binding event by controlling the amount and orientation of ligand. For immobilization on biorepulsive amino‐functionalized SPR chips by reductive amination, diverse aldehyde‐functionalized glycan structures (glucose, galactose, mannose, glucosamine, cellobiose, lactose, and lactosamine) have been synthesized in several facile steps that include olefin metathesis. Effective immobilization and the first binding studies are presented for the lectin concanavalin A.  相似文献   

17.
Glycodendrimers are an important class of synthetic macromolecules that can be used to mimic many structural and functional features of cell-surface glycoconjugates. Their carbohydrate moieties perform key important functions in bacterial and viral infections, often regulated by carbohydrate–protein interactions. Several studies have shown that the molecular structure, valency and spatial organisation of carbohydrate epitopes in glycoconjugates are key factors in the specificity and avidity of carbohydrate–protein interactions. Choosing the right glycodendrimers almost always helps to interfere with such interactions and blocks bacterial or viral adhesion and entry into host cells as an effective strategy to inhibit bacterial or viral infections. Herein, the state of the art in the design and synthesis of glycodendrimers employed for the development of anti-adhesion therapy against bacterial and viral infections is described.  相似文献   

18.
The molecular packing of bidisperse matrixes of amorphous carbohydrates consisting of a fractionated maltopolymer supplemented with various amounts of the disaccharide maltose is investigated by combining Positron Annihilation Lifetime Spectroscopy (PALS) with specific volume measurements. The maltopolymer-maltose blends are equilibrated at a range of water activities between 0 and 0.75 at 25 degrees C in order to investigate the effect of water content and carbohydrate molecular weight distribution on the size of the molecular free volume holes in both the glassy and rubbery states. In the rubbery state, the size of the intermolecular holes is only very weakly dependent on the carbohydrate molecular weight, provided that the carbohydrate blends are analyzed at the same water content. In contrast, in the glassy state, significant differences in the size of the free volume holes are observed between the various blends at constant water content. Both the specific volume and the hole volume decrease with increasing maltose content, initially rapidly up to a maltose content of about 40 wt % on total carbohydrate. In addition, we find that the role of water as a plasticizer and matrix constituent is a complex one. At very low water contents, water acts by filling the free volume holes between the carbohydrate molecules. This hole-filling mechanism could well be related to the phenomenon of anti-plasticization observed before. At higher water contents, corresponding generally to water activities above 0.11 at 25 degrees C, water conversely increases the average hole volume in the carbohydrate matrixes, most likely caused by water interfering with the hydrogen bonding between the carbohydrate molecules, leading to a local expansion of the molecular packing.  相似文献   

19.
选取3种不同结构的苄醚型树枝状分子为分枝,以N-乙酰氨基葡萄糖为内核,合成出一类树枝化碳水化物;利用DSC、热台偏光显微镜、XRD和CD/UV光谱等手段研究该类化合物的液晶性,并命名为树状碳水化合物液晶。研究表明,连接有楔形树枝状单元的化合物形成手性柱状六方相或者向列相,连接有锥形树枝状单元的化合物未能如预期形成立方相,而仍然形成手性柱状六方相.超分子手性很可能源于树枝状单元与糖内核的协同自组装,使得树状分子沿着柱轴螺旋式堆砌;而糖环内核则对超分子柱的手性起调控作用,从而避免了外消旋的发生.该类化合物为研究碳水化合物诱导手性超分子聚集体提供了新的思路.  相似文献   

20.
The study of glycobiology has been seriously hampered due to lack of an ideal assay tool. This work proposes a robust carbohydrate monolayer platform to solve the problems of active site inaccessibility and lectin denaturation associated with protein arrays reported for detection of cell surface carbohydrates and develops a convenient method for monitoring cell surface carbohydrate sites of interest, with high sensitivity, acceptable rapidity, low cost, and excellent extensibility. It utilizes the competitive binding of solid-surface-confined and cell-surface-residing carbohydrates to quantum dot labeled carbohydrate recognition protein and subsequent voltammetric quantification of the metal signature. The mannan monolayer strategy exhibited sensitive response to K562 cells and possessed potential specificity due to the specific interaction between lectin and corresponding carbohydrate. By comparing the competitive binding of K562 cells with mannan in solutions, the average Con A binding capacity of a single K562 cell could be estimated to correspond to 6.9 pg or 2.3 x 10(10) mannose moieties. This strategy integrates the advantages of surface assembly, nanotechnology, bioconjugate techniques, and electrochemical detection and can be expanded for profiling cell surface carbohydrates and high-throughput multiple detection by simultaneously using more pairs of lectin and carbohydrate owing to the multiple coding capability of QDs, which provides an important protocol for the quantitative evaluation of cell surface carbohydrate sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号