首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a scale‐free random graph process in which the number of edges added at each step increases. This differs from the standard model in which a fixed number, m, of edges are added at each step. Let f(t) be the number of edges added at step t. In the standard scale‐free model, f(t) = m constant, whereas in this paper we consider f(t) = [tc],c > 0. Such a graph process, in which the number of edges grows non‐linearly with the number of vertices is said to have accelerating growth. We analyze both an undirected and a directed process. The power law of the degree sequence of these processes exhibits widely differing behavior. For the undirected process, the terminal vertex of each edge is chosen by preferential attachment based on vertex degree. When f(t) = m constant, this is the standard scale‐free model, and the power law of the degree sequence is 3. When f(t) = [tc],c < 1, the degree sequence of the process exhibits a power law with parameter x = (3 ? c)/(1 ? c). As c → 0, x → 3, which gives a value of x = 3, as in standard scale‐free model. Thus no more slowly growing monotone function f(t) alters the power law of this model away from x = 3. When c = 1, so that f(t) = t, the expected degree of all vertices is t, the vertex degree is concentrated, and the degree sequence does not have a power law. For the directed process, the terminal vertex is chosen proportional to in‐degree plus an additive constant, to allow the selection of vertices of in‐degree zero. For this process when f(t) = m is constant, the power law of the degree sequence is x = 2 + 1/m. When f(t) = [tc], c > 0, the power law becomes x = 1 + 1/(1 + c), which naturally extends the power law to [1,2]. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 38, 396–421, 2011  相似文献   

2.
The present investigation deals with an undulating surface model for the motility of bacteria gliding on a layer of non‐Newtonian slime. The slime being the viscoelastic material is considered as a power‐law fluid. A hydrodynamical model of motility involving an undulating cell surface which transmits stresses through a layer of exuded slime to the substratum is examined. The non‐linear differential equation resulting from the balance of momentum and mass is solved numerically by a finite difference method with an iteration technique. The manner in which the various exponent values of the power‐law flow affect the structure of the boundary layer is delineated. A comparison is made of the power‐law fluid with the Newtonian fluid. For the power‐law fluid with respect to different power‐law exponent values, shear‐thinning and shear‐thickening effects can be observed, respectively. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Jianxi Luo 《Complexity》2013,18(5):37-47
To compare the relative power of individual sectors to pull the entire economy, i.e., the power‐of‐pull, this article utilizes a complex system perspective to model the economy as a network of economic sectors connected by trade flows. A sector's power‐of‐pull is defined and calculated as a function of the powers‐of‐pull of those sectors that it pulls through network linkages, and their powers‐of‐pull are, in turn, functions of those sectors that they further pull ad infinitum throughout the network. Theoretically, boosting activities in sectors with a higher power‐of‐pull will generate greater network effects while stimulating the entire economy, especially during recessions. This method is applied to the United States in the years before and after the 2008 financial crisis. The results provide a fresh look at the U.S. government's economic revival policies and reveal fundamental changes in the economic structure of the U.S. This work advocates a network‐based analysis of the economy as a complex system. © 2013 Wiley Periodicals, Inc. Complexity 18: 37–47, 2013  相似文献   

4.
Self‐ and cross‐diffusion are important nonlinear spatial derivative terms that are included into biological models of predator–prey interactions. Self‐diffusion models overcrowding effects, while cross‐diffusion incorporates the response of one species in light of the concentration of another. In this paper, a novel nonlinear operator splitting method is presented that directly incorporates both self‐ and cross‐diffusion into a computational efficient design. The numerical analysis guarantees the accuracy and demonstrates appropriate criteria for stability. Numerical experiments display its efficiency and accuracy.  相似文献   

5.
In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of reconstructing a small anomaly in a visco‐elastic medium from wavefield measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we study the global regularity of the displacement and stress fields of a nonlinear elastic model of power‐law type. It is assumed that the underlying domains are Lipschitz domains which satisfy an additional geometric condition near those points, where the type of the boundary conditions changes. The proof of the global regularity result relies on a difference quotient technique. Finally, a global regularity result for the stress fields of the elastic, perfect plastic Hencky model is derived. This model appears as a limit model of the power‐law model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Heat transfer of a power‐law non‐Newtonian incompressible fluid in channels with porous walls has not been carefully studied using a proper numerical method despite a few constructions of approximate analytic solutions through the similarity transformation and perturbation method for Newtonian fluids (i.e. power‐law index being one). In this paper, we propose a finite element method for the thermal incompressible flow equations. The incompressible condition is treated by a penalty formulation. Numerical solutions are validated by comparing them with an approximate analytic solution of the Navier–Stokes equation in the Newtonian fluid case. Then, the method is used to simulate the heat transfer of various power‐law fluids. Additionally, unlike previous studies, we allow the thermal diffusivity to be a function of temperature gradient. The effect of different values of the parameters on the temperature and velocity is also discussed in this paper. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this paper is to establish a global existence result for a nonlinear reaction diffusion system with fractional Laplacians of different orders and a balance law. Our method of proof is based on a duality argument and a recent maximal regularity result due to Zhang.  相似文献   

9.
The advection‐diffusion equation has a long history as a benchmark for numerical methods. Taylor‐Galerkin methods are used together with the type of splines known as B‐splines to construct the approximation functions over the finite elements for the solution of time‐dependent advection‐diffusion problems. If advection dominates over diffusion, the numerical solution is difficult especially if boundary layers are to be resolved. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show the behavior of the method with emphasis on treatment of boundary conditions. Taylor‐Galerkin methods have been constructed by using both linear and quadratic B‐spline shape functions. Results shown by the method are found to be in good agreement with the exact solution. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

10.
In this work, we study the numerical simulation of the one‐dimensional reaction‐diffusion system known as the Gray‐Scott model. This model is responsible for the spatial pattern formation, which we often meet in nature as the result of some chemical reactions. We have used the trigonometric quartic B‐spline (T4B) functions for space discretization with the Crank‐Nicolson method for time integration to integrate the nonlinear reaction‐diffusion equation into a system of algebraic equations. The solutions of the Gray‐Scott model are presented with different wave simulations. Test problems are chosen from the literature to illustrate the stationary waves, pulse‐splitting waves, and self‐replicating waves.  相似文献   

11.
We developed a nonconventional Eulerian‐Lagrangian single‐node collocation method (ELSCM) with piecewise‐cubic Hermite polynomials as basis functions for the numerical simulation to unsteady‐state advection‐diffusion transport partial differential equations. This method greatly reduces the number of unknowns in the conventional collocation method, and generates accurate numerical solutions even if very large time steps are taken. The method is relatively easy to formulate. Numerical experiments are presented to show the strong potential of this method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 271–283, 2003.  相似文献   

12.
We present a scheme for solving two‐dimensional, nonlinear reaction‐diffusion equations, using a mixed finite‐element method. To linearize the mixed‐method equations, we use a two grid scheme that relegates all the Newton‐like iterations to a grid ΔH much coarser than the original one Δh, with no loss in order of accuracy so long as the mesh sizes obey . The use of a multigrid‐based solver for the indefinite linear systems that arise at each coarse‐grid iteration, as well as for the similar system that arises on the fine grid, allows for even greater efficiency. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 317–332, 1999  相似文献   

13.
This paper deals with the dissipativity and synchronization control of fractional‐order memristive neural networks (FOMNNs) with reaction‐diffusion terms. By means of fractional Halanay inequality, Wirtinger inequality, and Lyapunov functional, some sufficient conditions are provided to ensure global dissipativity and exponential synchronization of FOMNNs with reaction‐diffusion terms, respectively. The underlying model and the obtained results are more general since the reaction‐diffusion terms are first introduced into FOMNNs. The given conditions are easy to be checked, and the correctness of the obtained results is confirmed by a living example.  相似文献   

14.
We study the properties of coefficient matrices arising from high‐order compact discretizations of convection‐diffusion problems. Asymptotic convergence factors of the convex hull of the spectrum and the field of values of the coefficient matrix for a one‐dimensional problem are derived, and the convergence factor of the convex hull of the spectrum is shown to be inadequate for predicting the convergence rate of GMRES. For a two‐dimensional constant‐coefficient problem, we derive the eigenvalues of the nine‐point matrix, and we show that the matrix is positive definite for all values of the cell‐Reynolds number. Using a recent technique for deriving analytic expressions for discrete solutions produced by the fourth‐order scheme, we show by analyzing the terms in the discrete solutions that they are oscillation‐free for all values of the cell Reynolds number. Our theoretical results support observations made through numerical experiments by other researchers on the non‐oscillatory nature of the discrete solution produced by fourth‐order compact approximations to the convection‐diffusion equation. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 155–178, 2002; DOI 10.1002/num.1041  相似文献   

15.
We developed a nonconventional Eulerian‐Lagrangian single‐node collocation method for transient advection‐diffusion transport partial differential equations in multiple space dimensions. This method greatly reduces the number of unknowns in conventional collocation method, generates accurate numerical solutions, and allows large time steps to be used in numerical simulations. We perform numerical experiments to show the strong potential of the method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 284–301, 2004  相似文献   

16.
Alternating‐Direction Explicit (A.D.E.) finite‐difference methods make use of two approximations that are implemented for computations proceeding in alternating directions, e.g., from left to right and from right to left, with each approximation being explicit in its respective direction of computation. Stable A.D.E. schemes for solving the linear parabolic partial differential equations that model heat diffusion are well‐known, as are stable A.D.E. schemes for solving the first‐order equations of fluid advection. Several of these are combined here to derive A.D.E. schemes for solving time‐dependent advection‐diffusion equations, and their stability characteristics are discussed. In each case, it is found that it is the advection term that limits the stability of the scheme. The most stable of the combinations presented comprises an unconditionally stable approximation for computations carried out in the direction of advection of the system, from left to right in this case, and a conditionally stable approximation for computations proceeding in the opposite direction. To illustrate the application of the methods and verify the stability conditions, they are applied to some quasi‐linear one‐dimensional advection‐diffusion problems. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

17.
Our aim in this paper is to study the well‐posedness of a singular reaction‐diffusion equation which is related with brain lactate kinetics, when spatial diffusion is taken into account. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
To understand how cognition and response selection processes might emerge from dynamic brain systems, we analyzed reaction times during the performance of both a working memory task and a choice reaction time task at different levels of “cognitive load.” Our findings suggest a continuous transition—tuned by load—from random behavior toward scale‐free like behavior as an expanding connectivity process in a network poised near a critical point. © 2012 Wiley Periodicals, Inc. Complexity, 2012  相似文献   

19.
This paper deals with radial solutions to localized reaction‐diffusion equations with variable exponents, subject to homogeneous Dirichlet boundary conditions. The global existence versus blow‐up criteria are studied in terms of the variable exponents. We proposed that the maximums of variable exponents are the key clue to determine blow‐up classifications and describe blow‐up rates for positive solutions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The main objective of this paper is to study the dynamical transition for the S‐K‐T biological competition system with cross‐diffusion. Based on the spectral analysis, the principle of exchange of stabilities conditions for eigenvalues are obtained. By using the dynamical transition theory, 2 different types of dynamical transition for the S‐K‐T model are also derived. In addition, an example is given to illustrate our main results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号