首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
In this article, we present a multiagent system (MAS) simulation of a financial market and investigate the requirements to obtain realistic data. The model consists of autonomous, interactive agents that buy stock on a financial market. Transaction decisions are based on a number of individual and collective elements, the former being risk aversion and a set of decision rules reflecting their anticipation of the future evolution of prices and dividends and the latter the information arriving on the market influencing the decision making process of each trader. We specifically look at this process and the following observations hold: The market behavior is determined by the information arriving at the market and agent heterogeneity is required in order to obtain the right statistical properties of the price and return time series. The observed results are not sensitive to changes in the parameter values. © 2003 Wiley Periodicals, Inc.  相似文献   

2.
Abstract. This paper examines the existence of general equilibrium in a discrete time economywith the infinite horizon incomplete markets. There is a single good at each node in the eventtree. The existence of general equilibrium for the infinite horizon economy is proved by takinglimit of equilibria in truncated economies in which trade stops at a sequence of dates.  相似文献   

3.
We develop a computational model to explore how ethnic geography shapes the distribution of violence in civil war. We seed the model with disaggregated data on ethnic settlement patterns in Afghanistan and calibrate the model parameters to fit empirically observed locations of violence against civilians. Our simulation suggests that (i) political actors are more likely to attack civilians in heterogeneous areas where members of one ethnic group are exposed to members of a rival group; (ii) violence directed at civilians occurs with greater frequency in locations where one political actor exercises hegemonic but incomplete territorial control (relative to areas of complete or mixed control); and (iii) geographically concentrated ethnic minorities face a higher risk of violence. © 2012 Wiley Periodicals, Inc. Complexity, 2012  相似文献   

4.
This article addresses the stock market as a complex system. The complexity of the stock market arises from the structure of the environment, agent heterogeneity, interactions among agents, and interactions with market regulators. We develop the idea of a meta‐model, which is a model of models represented in an agent‐based model that allows us to investigate this type of market complexity. The novelty of this article is the incorporation of various complexities captured by network theoretical models or induced by investment behavior. The model considers agents heterogeneous in terms of their strategies and investment behavior. Four investment strategies are included in the model: zero‐intelligence, fundamental strategy, momentum (trend followers), and adaptive trading strategy using the artificial neural network algorithm. In terms of behavior, the agents can be risk averse or loss occupied with overconfidence or conservative biases. The agents may interact with each other by sharing market sentiments through a structured scale‐free network. The market regulator controls the market through various control tools such as the risk‐free rate and taxation. Parameters are calibrated to the S&P500. The calibration is implemented using a scatter search heuristic approach. The model is validated using various stylized facts of stock return patterns such as excess kurtosis, auto‐correlation, and ARCH effect phenomena. Analysis at the macro and micro level of the market was performed by measuring the sensitivity of volatility and market capital and investigating the wealth distributions of the agents. We found that volatility is more sensitive to the model parameters than to market capital, and thus, the level of volatility does not affect market capital. In addition, the findings suggest that the efficient market hypothesis holds at the macro level but not at the micro level. © 2016 Wiley Periodicals, Inc. Complexity 21: 530–554, 2016  相似文献   

5.
The cerebellum and basal ganglia are reciprocally connected with the cerebral cortex, forming many loops that function as distributed processing modules. Here we present a detailed model of one microscopic loop between the motor cortex and the cerebellum, and we show how small arrays of these microscopic loops (CB modules) can be used to generate biologically plausible motor commands for controlling movement. A fundamental feature of CB modules is the presence of positive feedback loops between the cerebellar nucleus and the motor cortex. We use nonlinear dynamics to model one microscopic loop and to investigate its bistable properties. Simulations demonstrate an ability to program a motor command well in advance of command generation and an ability to vary command duration. However, control of command intensity is minimal, which could interfere with the control of movement velocity. To assess these hypotheses, we use a minimal nonlinear model of the neuromuscular (NM) system that translates motor commands into actual movements. Simulations of the combined CB‐NM modular model indicate that movement duration is readily controlled, whereas velocity is poorly controlled. We then explore how an array of eight CB‐NM modules can be used to control the direction and endpoint of a planar movement. In actuality, thousands of such microscopic loops function together as an array of adjustable pattern generators for programming and regulating the composite motor commands that control limb movements. We discuss the biological plausibility and limitations of the model. We also discuss ways in which an agent‐based representation can take advantage of the modularity in order to model this complex system. © 2008 Wiley Periodicals, Inc. Complexity, 2008  相似文献   

6.
We compared flood mapping techniques using a one‐dimensional (1D) hydraulic model HEC‐RAS and two‐dimensional (2D) LISFLOOD‐FP for a 10‐km reach of Gorgan River in Iran. Both models were run using the same hydrologic input data. The input into the models was a steady discharge of 90 cm, corresponds to a flood peak occurred on March 25, 2012. Flood maps generated using these two models were compared with an observed flood inundation map, using F‐statistic. The roughness coefficients of the models were calibrated by maximizing the value of the F‐statistic. Based on the F‐statistic, LISFLOOD‐FP gives a slightly better result (F = 0.69) than HEC‐RAS (F = 0.67). Visual comparison of the flood extents generated by the two models showed reasonably good agreement. Validation was done using a flood event occurred on May 31, 2014. The LISFLOOD‐FP model gave a better result for validation as well. The 2D model showed more consistency in comparison with the 1D model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号