首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
放大转发OFDM协同中继系统多业务资源分配机制   总被引:1,自引:0,他引:1  
陈书平  王文博  张兴  付雷 《通信学报》2010,31(4):116-121
提出了点到点多载波协同中继系统多业务资源分配框架,并给出了一种最优化自适应功率、载波和比特分配算法;为了降低算法复杂度,又提出了一种次优搜索算法,该算法依据信道特性,在满足业务QoS基础上使业务占用资源最小.仿真结果表明:提出的最优算法在保障多媒体业务QoS的基础上能够有效改善频谱效率,对比于传统算法有1~2bit/(s·Hz)的性能提升;而提出的次优搜索能够取得接近最优算法的性能(差别在0.6 bit/(s·Hz)左右),并且实现复杂度由指数级别降至线性.  相似文献   

2.
In this paper, we investigate the quality‐of‐service (QoS) driven subcarrier pairing and power allocation for two‐hop amplify‐and‐forward OFDM relay systems. By integrating the concept of effective capacity, our goal is to maximize the system throughput subject to a given delay QoS constraint. We propose a jointly optimal subcarrier pairing and power allocation scheme, which can be implemented with two separate steps. First, pair the subcarriers over the source‐relay channel and relay‐destination channel by the descending order of the subcarriers’ channel gains. Second, by making use of the derived equivalent end‐to‐end channel gains of the subcarrier pairs, optimally allocate power over the subcarrier pairs, and then optimally partition the power of the subcarrier pairs between the source and the relay. The simulation results show that our proposed scheme can efficiently provide different levels of delay QoS guarantees, even if under stringent delay QoS constraints. The simulation results also verify that our proposed scheme shows significant superiorities over the other existing schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
通过基站的反馈信息,一个固定中继节点可以用一个OFDM符号同时帮助多个源用户转发信息,这样可以有效地利用带宽。因此,为了进一步提高系统容量,降低中断概率,先在中继节点间进行子载波调整,然后以获取信道容量最大为原则,提出了源用户和中继节点间子载波配对和功率分配的联合优化算法。仿真结果表明,相对于随机中继子载波选择算法以及平均功率分配算法,所提算法的中继系统容量有较大提升,同时中断概率有较为明显的下降。  相似文献   

4.
In this paper, we study the adaptive resource allocation in multiuser orthogonal frequency division multiplexing (OFDM) systems. We try to maximize the sum capacity of an OFDM system with given transmission power budget, while meeting users' minimal rate requirements. Unlike other resource allocation schemes, which generally separate subchannel allocation and power distribution into independent procedures, our proposed algorithm implements joint subchannel and power allocation. Given a set of subchannels, the required power to satisfy a user's minimal rate constraint is calculated by water‐filling policy. Then, the user who requires the maximum power to meet the rate requirement has a priority to obtain an additional subchannel. The procedure continues until all subchannels are consumed, by which time the consumed power to meet all users' rate requirements is also worked out. Finally, the margin power is allocated among all subchannels in an optimal manner to maximize the sum capacity of the OFDM system. Simulation results show that our proposed algorithm performs better than other existing ones. The solution produced by our proposed algorithm is close to the upper bound, while its complexity is relatively lower compared with other methods, which makes it attractive for applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
针对OFDM中继信道,本文提出了一种基于选择性子载波的无线资源分配算法.文中通过选择信道条件最好的部分子载波进行平均功率分配,并对中继子载波进行优化分配.仿真结果表明,该算法不仅能够提高系统可获取的传输速率,而且可以降低运算复杂度.  相似文献   

6.
According to the quality of service (QoS) requirements of differentiated service (DiffServ), a cross-layer resource allocation algorithm for multi-user orthogonal frequency division multiplexing(OFDM)systems is presented. The constant rate is maintained by adjusting the power dynamically for the voice traffics with high priority, whereas the fairness amongst the data traffics is guaranteed by weighted fairness queued (WFQ) algorithm. The two above-mentioned strategies are used for video traffics to realize variable data rate with the constraint of the minimum rate. Combing all these methods, both the throughput and the fairness are ensured when there are multiple users in the OFDM system. Simulation results indicate the validity of the proposed algorithm, which can work well even if the SNR is less than 0 dB.  相似文献   

7.
在基于放大转发( AF)和译码转发( DF)的混合中继转发机制模型下,为了使系统获得最大和速率,提出了相应的资源分配方案,在子载波对混合中继协议的判断选择和最优功率分配算法的基础上讨论了等效信道增益模型和非等效信道增益模型。在非等效信道增益模型中,为了降低计算复杂度提出了一种次优算法。在该机制模型下,系统自适应地选择AF或者DF转发,既克服了两种单一转发模式存在的弊端,又能获得更大的和速率,从而提高了资源利用率。仿真结果表明,当系统功率等因素变化时,该分配方案下的混合中继转发模型与传统的AF和DF模型相比系统和速率分别提高了60%和8%以上,充分说明了该系统的优越性。  相似文献   

8.
This paper proposes two power‐efficient resource allocation policies with statistical delay Quality of Service (QoS) guarantees for uplink time‐division multiple access (TDMA) communication links. Specifically, the first policy aims at maximizing the system throughput while fulfilling the delay QoS and average power constraints, and the second policy is devised as an effort to minimize the total average power subject to individual delay QoS constraints. Convex optimization problems associated with the resource allocation policies are formulated based on a cross‐layer framework, where the queue at the data link layer is served by the resource allocation policy. By employing the Lagrangian duality theory and the dual decomposition theory, two subgradient iteration algorithms are developed to obtain the globally optimal solutions. The aforementioned resource allocation policies have been shown to be deterministic functions of delay QoS requirements and channel fading states. Moreover, numerical results are provided to demonstrate the performance of the proposed resource allocation policies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
This paper studies the resource allocation for a multi-user two-way amplify-and-forward (AF) relay network over orthogonal frequency-division multiplexing (OFDM) technology,where all users communicate with their pre-assigned partners.Using convex optimization techniques,an optimal solution tominimize the total transmit power while satisfy each user-pair’s data rate requirements is proposed.We divide the resource allocation problem into two subproblems:(1) power optimization within user-pair and relay in each subcarrier.(2) optimal subcarrier allocation and sum power assignment among N parallel OFDM subcarriers.Closed-form expressions of the power among user-pair and relay can be obtained in subproblem (1),and so the proposed algorithm decreases the variable dimensionality of the objective function to reduce the complexity of this optimization problem.To solve it,a three-step suboptimal approach is proposed to assign the resources to user-pairs:Firstly,decompose each user-pair into two sub user-pairs which have one-way and two-way relaying transmission modes.Secondly,allocate the subcarriers to the new mode user-pairs and assign the transmit power to each carrier.Thirdly,distribute the assigned power to three nodes allocated in the subcarrier.Simulation results demonstrate the significant power is saved with the proposed solutions,as compared to a fixed subcarrier allocation.  相似文献   

10.
 本文研究具有直接通信链路的OFDM解码转发(Decode-and-Forward,DF)中继系统的子载波配对与功率分配算法,目标是在满足业务时延QoS要求的前提下最大化系统容量.利用有效容量模型,首先把OFDM DF中继系统的子载波配对与功率分配问题形成为混合整数规划问题,然后把其转化为连续松弛凸规划问题,利用凸优化方法得到原问题的最优解,从而提出了一种联合最优的子载波配对与功率分配迭代算法.理论推导结果和仿真结果表明,最优子载波配对与功率分配不仅取决于子载波的信道增益,还取决于业务的时延QoS要求.与已有算法相比,本文算法获得的有效容量最大.  相似文献   

11.
In this paper we study the resource allocation problem for the multiuser orthogonal frequency division multiplexing (OFDM)‐based cognitive radio (CR) systems with proportional rate constraints. The mutual interference introduced by primary user (PU) and cognitive radio user (also referred to secondary user, SU) makes the optimization problem of CR systems more complex. Moreover, the interference introduced to PUs must be kept under a given threshold. In this paper, the highest achievable rate of each OFDM subchannel is calculated by jointly considering the channel gain and interference level. First, a subchannel is assigned to the SU with the highest achievable rate. The remaining subchannels are always allocated to the SU that suffers the severest unjustness. Second, an efficient bit allocation algorithm is developed to maximize the sum capacity, which is again based on the highest achievable rate of each subchannel. Finally, an adjustment procedure is designed to maintain proportional fairness. Simulation results show that the proposed algorithm maximizes the sum capacity while keeping the proportional rate constraints satisfied. The algorithm exhibits a good tradeoff between sum capacity maximization and proportional fairness. Furthermore, the proposed algorithm has lower complexity compared with other algorithms, rendering it promising for practical applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This article addresses the multicast resource allocation problem with min-rate requirement constraints in orthogonal frequency division multiplexing (OFDM) systems. Due to the prohibitively high complexity for nonlinear and combinatorial optimization, the original problem is relaxed and reformulated to form a standard optimization problem. By theoretical derivation according to the Karush-Kuhn-Tucker (KKT) conditions, two propositions are presented as the necessary criteria for optimality. Furthermore, a two-step resource allocation scheme, including subcarrier assignment and power allocation, is proposed on a basis of the propositions for practical implementation. With the min-rate based multicast group order, subcarriers are assigned in a greedy fashion to maximize the capacity. When subcarrier assignment is determined, the proposed power allocation can achieve the optimal performance for the min-rate constrained capacity maximization with an acceptable complexity. Simulation results indicate that the proposed scheme approximates to optimal resource allocation obtained by exhaustive search with a negligible capacity gap, and considerably outperforms equal power distribution. Meanwhile, multicast is remarkably beneficial to resource utilization in OFDM systems.  相似文献   

13.
研究采用放大转发协议的单向和双向中继网络中的中继选择与功率分配的联合优化策略。该策略以一定服务质量(QoS)要求为约束条件,以最小化中继网络中各节点的总功率为目标,建立优化问题。运用凸优化技术,得到了该优化问题的闭合解。仿真结果表明在满足相同的QoS要求下,该最优联合策略较传统的随机选择与等功率分配策略具有较低的功率消耗。  相似文献   

14.
As the system performance is obviously improved by introducing the concept of relay into the traditional orthogonal frequency division multiple access(OFDMA)systems,resource scheduling in relay-enhanced OFDMA systems is worthy of being studied carefully.To solve the optimization problem of achieving the maximum throughput while satisfying the quality of service(QoS)and guaranteeing the fairness of users,a novel resource scheduling scheme with QoS support for the downlink of two-hop relay-enhanced OFDMA systems is proposed.The proposed scheme,which is considered both in the first time sub-slot between direct link users and relay stations,and the second time sub-slot among relay link users,takes QoS support into consideration,as well as the system throughput and the fairness for users.Simulation results show that the proposed scheme has good performance in maximizing system throughput and guaranteeing the performance in the service delay and the data loss rate.  相似文献   

15.
在用户QoS参数限制下,该文提出一种在多用户MIMO/OFDM下行链路使系统总速率最大的资源分配机制。基站应用空分多址接入,使得每个子载波可支持多个用户,应用线性预编码方法抵消用户间的干扰,提出保障QoS的自适应功率、比特分配方案。该文并提出两种可应用到实际系统的低复杂度的比特加载和比特去除算法,仿真结果表明,该两种方法性能可非常接近最优遍历算法。  相似文献   

16.
This paper is concerned with the bandwidth allocation problem for cooperative relay networks. The relay takes the roles of not only forwarding the data originated from the users but also of transmitting its own data to the access point. We focus on the interesting questions of when and how the users and the relay can both benefit from the cooperation by bandwidth allocation for relaying among the users. The bandwidth allocation problem is formulated in this paper as a Nash bargaining problem, and then the bandwidth allocation algorithm can be given on the basis of the sub‐gradient method. Simulation results illustrate that users and the relay can both obtain more profits through cooperation. Copyright ©2011 John Wiley & Sons, Ltd.  相似文献   

17.
There has been a lot of research works considering the resource allocation of the downlink multihop orthogonal frequency division multiplexing systems. However, due to the distributed nature of the uplink power constraints, the resource allocation in the uplink multihop systems, where multiple mobile stations transmit to one base station with the aid of one or many relay stations, has much difference and has not been well investigated so far. In this paper, we originally study the joint subcarrier and power allocation problem for the uplink dual‐hop transmission with the aim to maximize the system transmit rate. The resource allocation problem is approximated to be a concave maximization problem. By using mathematical decomposition techniques, the problem is first decoupled and solved by the proposed near‐optimal method, which has low‐computation complexity. Then, our algorithm is extended to the case with subcarrier matching on the dual hops. Numerical results show that our proposed algorithm improves the system transmission rate. Compared with the equal power allocation schemes, our algorithm can achieve significant gain in system transmit rate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This article investigates resource allocation in multi-hop orthogonal frequency division multiplexing (OFDM) system with amplifying-and-forwarding relaying to maximize the end-to-end capacity. Most existing methods for multi-hop system focus on power allocation or subcarrier selection separately, but joint resource allocation is rarely considered due to the absence of effective interaction schemes. In this work, a novel joint resource allocation methodology is proposed based on Partheno genetic algorithm (PGA), which produces excellent subcarrier allocation set (referred to as individual in PGA) with higher capacity by evolution operator generation by generation. In addition, an adaptive power allocation is also designed to evaluate the fitness of PGA and further enhance the system capacity. Both theoretical analysis and simulated results show the effectiveness of the proposed joint strategy. It outperforms the traditional method by as much as 40% capacity improvement for 3-hop relaying system when system power is high, and obtains much more capacity enhancement percent under conditions of low system power.  相似文献   

19.
多用户正交频分复用(OFDM)系统中,充分利用多载波系统的多用户分集进行合理无线资源分配,能够显著提高系统容量和最大限度提高频谱利用率。经过广泛的研究,很多有效资源分配算法已经被提出来。重点讨论了单小区多用户OFDM系统关于子载波、比特及功率等无线资源的分配问题,介绍现有的研究成果,包括常见的模型及求解方法,并介绍近期的研究热点,包括多小区系统、多入多出(MIMO)系统等。  相似文献   

20.
We address the problem of subchannel and transmission power allocation in orthogonal frequency division multiple access relay networks with an aim to maximize the sum rate and maintain proportional rate fairness among users. Because the formulated problem is a mixed‐integer nonlinear optimization problem with an extremely high computational complexity, we propose a low‐complexity suboptimal algorithm, which is a two‐step separated subchannel and power allocation algorithm. In the first step, subchannels are allocated to each user, whereas in the second step, the optimal power allocation is carried out on the basis of the given subchannel allocation and the nonlinear interval Gauss–Seidel method. Simulation results have demonstrated that the proposed algorithm can achieve a good trade‐off between the efficiency and the fairness compared with two other existing relevant algorithms. In particular, the proposed algorithm can always achieve 100% fairness under various conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号