首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper addresses the problem of projective synchronization of chaotic systems and switched chaotic systems by adaptive control methods. First, a necessary and sufficient condition is proposed to show how many state variables can realize projective synchronization under a linear feedback controller for the chaotic systems. Then, accordingly, a new algorithm is given to select all state variables that can realize projective synchronization. Furthermore, according to the results of the projective synchronization of chaotic systems, the problem of projective synchronization of the switched chaotic systems comprised by the unified chaotic systems is investigated, and an adaptive global linear feedback controller with only one input channel is designed, which can realize the projective synchronization under the arbitrary switching law. It is worth mentioning that the proposed method can also realize complete synchronization of the switched chaotic systems. Finally, the numerical simulation results verify the correctness and effectiveness of the proposed method.  相似文献   

2.
The generalized synchronization is studied by applying pure error dynamics and elaborate Lyapunov function in this paper. Generalized synchronization can be obtained by pure error dynamics without auxiliary numerical simulation, instead of current mixed error dynamics in which master state variables and slave state variables are presented. The elaborate Lyapunov function is applied rather than the current plain square sum Lyapunov function, deeply weakening the power of Lyapunov direct method. The scheme is successfully applied to both autonomous and nonautonomous double Mathieu systems with numerical simulations.  相似文献   

3.
In this paper, new adaptive synchronous criteria for a general class of n-dimensional non-autonomous chaotic systems with linear and nonlinear feedback controllers are derived. By suitable separation between linear and nonlinear terms of the chaotic system, the phenomenon of stable chaotic synchronization can be achieved using an appropriate adaptive controller of feedback signals. This method can also be generalized to a form for chaotic synchronization or hyper-chaotic synchronization. Based on stability theory on non-autonomous chaotic systems, some simple yet less conservative criteria for global asymptotic synchronization of the autonomous and non-autonomous chaotic systems are derived analytically. Furthermore, the results are applied to some typical chaotic systems such as the Duffing oscillators and the unified chaotic systems, and the numerical simulations are given to verify and also visualize the theoretical results.  相似文献   

4.
This article focuses on the problem of exponential synchronization for fractional‐order chaotic systems via a nonfragile controller. A criterion for α‐exponential stability of an error system is obtained using the drive‐response synchronization concept together with the Lyapunov stability theory and linear matrix inequalities approach. The uncertainty in system is considered with polytopic form together with structured form. The sufficient conditions are derived for two kinds of structured uncertainty, namely, (1) norm bounded one and (2) linear fractional transformation one. Finally, numerical examples are presented by taking the fractional‐order chaotic Lorenz system and fractional‐order chaotic Newton–Leipnik system to illustrate the applicability of the obtained theory. © 2014 Wiley Periodicals, Inc. Complexity 21: 114–125, 2015  相似文献   

5.
Several important properties of chaos synchronization of bidirectional coupled systems remain still unexplored. This article investigates synchronization behavior for chaotic systems subject to states quantization. Based on the invariance principle of differential equations, an adaptive feedback scheme is proposed to strictly synchronize chaotic systems via limited capacity communication channels. Furthermore, it is important to point out that the mutual synchronization behavior for bidirectional coupled systems is determined by the amount of transmitting information and the initial states of coupled systems. © 2015 Wiley Periodicals, Inc. Complexity 21: 335–342, 2016  相似文献   

6.
In this paper, we introduce the definition of complex complete synchronization (CCS) of hyperchaotic complex nonlinear systems that have not been introduced recently in the literature. This type of synchronization can study only for complex nonlinear systems. On the basis of Lyapunov function, a scheme is designed to achieve the CCS of two nonidentical hyperchaotic attractors of these systems. The effectiveness of the obtained results is illustrated by a simulation example. Numerical results are plotted to show state variables, modules errors, and phases errors of these hyperchaotic attractors after synchronization to prove that CCS is achieved. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper addresses the Q-S synchronization between chaotic and/or hyper-chaotic systems. Based on the Lyapunov stability theorem, a general scheme for Q-S synchronization of chaotic and/or hyper-chaotic systems is proposed. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). Four illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed general scheme for Q-S synchronization.  相似文献   

8.
Song Zheng 《Complexity》2015,21(2):333-341
This article investigates the function projective synchronization (FPS) for a class of time‐delay chaotic system via nonlinear adaptive‐impulsive control. To achieve the FPS, suitable nonlinear continuous and impulsive controllers are designed based on adaptive control theory and impulsive control theory. Using the generalized Babarlat's lemma, a general condition is given to ensure the FPS. Here, the time‐delay chaotic system is assumed to satisfy the Lipschitz condition while the Lipschitz constants are estimated by augmented adaptation equations. Numerical simulation results are also presented to verify the effectiveness of the proposed synchronization scheme. © 2014 Wiley Periodicals, Inc. Complexity 21: 333–341, 2015  相似文献   

9.
研究了一参数未知超混沌系统的函数投影同步问题.基于李雅谱诺夫稳定性理论,设计了实现混沌系统函数投影同步的有效非线性控制器,可以快速实现超混沌系统的加速函数投影同步,同时设计了参数控制律,有效的辨识了系统的未知参数,数值仿真验证了理论分析和数值计算的正确性.  相似文献   

10.
This paper investigates the quadratic optimal synchronization of uncertain chaotic systems with parameter mismatch, parametric perturbations and external disturbances on both master and slave systems. A robust control scheme based on Lyapunov stability theory and quadratic optimal control approach is derived to realize chaotic synchronization. The sufficient criterion for stability condition is formulated in a linear matrix inequality (LMI) form. The effect of uncertain parameters and external disturbance is suppressed to an H norm constraint. An adaptive algorithm is proposed to adjust the uncertain bound in the robust controller avoiding the chattering phenomena. The simulation results for synchronization of the Chua’s circuit system and the Lorenz system demonstrate the effectiveness of the proposed scheme.  相似文献   

11.
In this paper, we design a series of chaotic systems that can generate one-directional, two-directional and three-directional multi-scroll chaotic attractors. Then, based upon the properties of these chaotic systems, we construct appropriate Lyapunov functions and design simple linear feedback controls to globally exponentially stabilize and synchronize these chaotic systems. Numerical simulation results are also presented to show the applicability of the proposed control laws.  相似文献   

12.
A special full-state hybrid projective synchronization type is proposed in this paper. The anti-synchronization and complete synchronization can be achieved simultaneously in this new synchronization phenomenon. We point out how to realize this synchronization in chaotic systems: anti-synchronization in symmetrical coordinate subspace and complete synchronization in its normal coordinate subspace. Two illustrative examples, multi-scroll chaotic system by the partial Lyapunov stability theory, and a four-dimensional chaotic system by the invariance principle of differential equation are presented to exhibit this new synchronization.  相似文献   

13.
The knowledge about parameters and order is very important for synchronization of fractional-order chaotic systems. In this article, identification of parameters and order of fractional-order chaotic systems is converted to an optimization problem. Particle swarm optimization algorithm is used to solve this optimization problem. Based on the above parameter identification, synchronization of the fractional-order Lorenz, Chen and a novel system (commensurate or incommensurate order) is derived using active control method. The new fractional-order chaotic system has four-scroll chaotic attractors. The existence and uniqueness of solutions for the new fractional-order system are also investigated theoretically. Simulation results signify the performance of the work.  相似文献   

14.
In this paper, a new fractional‐order chaotic system and an adaptive synchronization of fractional‐order chaotic system are proposed. Parameters adaption laws are obtained to design adaptive controllers using Lyapunov stability theory of fractional‐order system. Finally, reliability of designed controllers and risk analysis of adaptive synchronization problem are formulated and, risk of using the proposed controllers in presences of external disturbances are demonstrated. Also, risk of controllers are reduced using an optimizing method. Numerical examples are used to verify the performance of the proposed controllers.  相似文献   

15.
Chaos synchronization is a procedure where one chaotic oscillator is forced to adjust the properties of another chaotic oscillator for all future states. This research paper studies and investigates the global chaos synchronization problem of two identical chaotic systems and two non‐identical chaotic systems using the linear active control technique. Based on the Lyapunov stability theory and using the linear active control technique, the stabilizing controllers are designed for asymptotically global stability of the closed‐loop system for both identical and non‐identical synchronization. Numerical simulations and graphs are imparted to justify the efficiency and effectiveness of the proposed scheme. All simulations have been done by using mathematica 9. © 2014 Wiley Periodicals, Inc. Complexity 21: 379–386, 2015  相似文献   

16.
This paper addresses the modified function projective lag synchronization (MFPLS) for a class of chaotic systems with unknown external disturbances. The disturbances are supposed to be generated by the exogenous systems. By using the disturbance-observer-based control and the linear matrix inequality approach, the disturbance observers are developed to ensure the boundedness of the disturbance error dynamics. Then by employing the sliding mode control (SMC) technique, an active SMC law is established to guarantee the disturbance rejection and realize MFPLS between the master and slave systems. And the corresponding numerical simulation is provided to illustrate the effectiveness of the proposed method.  相似文献   

17.
This work presents a direct approach to design stabilizing controller based on a special matrix structure to synchronize chaotic systems and extends the approach to synchronize fractional chaotic systems. With this method, chaos synchronization is implemented in Lorenz chaotic systems with known parameters and the same to Lorenz chaotic systems with unknown parameters. Especially, fractional Lorenz chaotic system with unknown parameters is synchronized by fractional Chen chaotic system too. Numerical simulations confirm the effectiveness of the method proposed.  相似文献   

18.
This paper presents a novel synchronization scheme of multiswitching dual combination synchronization which is first of its kind. Multiswitching dual combination synchronization is achieved for 6 time‐delay chaotic systems. Asymptotically stable synchronization states are established by nonlinear control method and Lyapunov Krasovskii functional. To elaborate the proposed scheme, an example of time‐delay Rossler, Chen, and Shimizu Morioka systems is considered, where time‐delay Rossler system and Chen system are considered as drive systems and time‐delay Shimizu Morioka system is considered as response system. Theoretical analysis and computational results are in excellent agreement.  相似文献   

19.
This article aims to introduce a projective synchronization approach based on adaptive fuzzy control for a class of perturbed uncertain multivariable nonaffine chaotic systems. The fuzzy‐logic systems are employed to approximate online the uncertain functions. A Lyapunov approach is used to design the parameter adaptation laws and to demonstrate the boundedness of all signals of the closed‐loop system as well as the convergence of the synchronization errors to bounded residual sets. Finally, numerical simulation results are presented to verify the feasibility and effectiveness of the proposed synchronization system based on fuzzy adaptive controller. © 2014 Wiley Periodicals, Inc. Complexity 21: 180–192, 2015  相似文献   

20.
In this paper, a method of the lag projective synchronization of a class of complex network constituted nodes with chaotic behavior is proposed. Discrete chaotic systems are taken as nodes to constitute a complex network and the topological structure of the network can be arbitrary. Considering that the lag effect between network node and chaos signal of target system, the control input of the network and the identification law of adjustment parameters are designed based on Lyapunov theorem. The synchronization criteria are easily verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号