首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
应用基质固相分散-反相高效液相色谱法提取和测定了水果中三种氨基甲酸酯农药残留。通过实验确定了最佳前处理条件:弗罗里硅土作为萃取吸附剂,样品与吸附剂质量比为1∶4,洗脱剂为丙酮∶二氯甲烷=3∶7(V/V)的混合液,洗脱剂的体积为10 m L。在优化的实验条件下,三种氨基甲酸酯农药的检出限在0.02~0.62μg/g之间,测定的线性范围为0.20~40μg/g,相关系数在0.9957~0.9990之间。方法应用于检测水果样品时,平均加标回收率为80.4%~116.5%,相对标准偏差为0.7%~8.0%。  相似文献   

2.
本文对溪黄草样品采用丙酮-正己烷提取,活性炭-中性氧化铝柱净化,石油醚-丙酮淋洗前处理;土壤样品经乙腈提取等步骤前处理,建立了溪黄草及土壤中二甲戊乐灵残留的气相色谱-电子捕获检测器(GC-ECD)的分析方法。结果表明:二甲戊乐灵的最小检出量为0.1ng,其在溪黄草和土壤中的最低检测浓度均为0.01mg/kg,在溪黄草中的平均回收率为88.53%~90.45%,相对标准偏差(RSD)为1.33%~2.76%;在土壤中的平均回收率为93.94%~96.23%,RSD为4.67%~4.80%,二甲戊乐灵在0.01~2mg/L范围内具有良好的线性关系。  相似文献   

3.
应用单滴液相微萃取(SD-LPME)技术建立了水体中二甲戊乐灵农药的高效液相色谱(HPLC)分析方法.研究了不同的萃取条件(萃取剂、体积、萃取时间、搅拌速度、温度等)及测定条件对检测二甲戊乐灵的影响,确定了最佳萃取条件:环己烷作萃取剂,萃取剂体积5 μL,液滴体积2 μL,搅拌速度350 r/min,35 ℃条件下萃取35 min.应用此方法测定了自来水和太湖水样中的二甲戊乐灵农药残留,相对标准偏差(RSD)在2 5%~3.4%(n=6)之间;回收率为88.0%~99.8%.  相似文献   

4.
建立了加速溶剂萃取(ASE)-气相色谱/质谱法(GC/MS)同时测定灯盏花及其土壤中阿特拉津和二甲戊乐灵2种除草剂的农药残留。样品采用丙酮-二氯甲烷(1∶1,V/V)加速溶剂萃取,弗罗里硅土柱层析净化,用GC/MS选择离子监测(SIM)法测定。结果表明,2种除草剂在0.05~2.00mg/L范围内线性良好,相关系数分别为0.9987~1.0000(灯盏花),0.9880~0.9980(土壤);在0.1、0.5和1.0mg/L添加水平下,2种除草剂在灯盏花及其土壤中的平均回收率分别为67.38%~104.02%和71.69%~105.58%,相对标准偏差(RSD)分别为3.21%~13.48%和2.65%~18.26%,方法的检出限(LOD)在灯盏花中为3.00~4.10ng/g,在土壤中为1.50~2.50ng/g。应用该法成功测定了云南省灯盏花及其土壤样品中2种除草剂残留。  相似文献   

5.
建立了沉积物中多氯联苯和有机氯农药等39种持久性有机污染物的同时测定方法。样品用正己烷和丙酮(体积比为1∶1)进行微波提取,提取溶液经凝胶色谱和弗罗里硅土净化,浓缩后采用气相色谱法测定。回收率在68.8%~84.2%,检出限为0.05~0.25ng/g。方法适用于沉积物样品中多种多氯联苯和有机氯农药含量的同时测定。  相似文献   

6.
初丽伟  阎吉昌  陈丹  侯志广  范志先 《分析化学》2006,34(10):1482-1486
建立了生晒参、全须生晒参中19种有机氯农药残留的毛细管气相色谱分析方法。对样品中六六六的4种异构体、滴滴涕的5种异构体、四氯苯胺、六氯苯、五氯硝基苯、七氯、五氯苯胺、艾氏剂、百菌清、环氧七氯、狄氏剂及异狄氏剂共19种有机氯农药的残留量进行了测定。以石油醚-丙酮混合物作为提取剂,样品采用索氏提取,提取液用弗罗里硅土柱层析净化。采用OV-1701石英毛细管气相色谱柱分离样品,ECD检测器进行检测。在3个水平添加时的回收率(n=5)分别为75.7%~96.1%、78.8%~111.6%和81.7%~115·2%;相对标准偏差分别为2.4%~10.6%、2.1%~9.8%和1.4~10.0%。方法用于生晒参和全须生晒参样品中农药残留的测定,结果满意。  相似文献   

7.
白术中有机磷及氨基甲酸酯类农药残留量的测定   总被引:1,自引:0,他引:1  
对白术中21种有机磷和氨基甲酸酯类农药残留量进行同时测定。在超声波辅助下溶剂提取,弗罗里硅土和中性氧化铝层析柱净化,选择离子-气相色谱-质谱(SIM-GC-MS)联用检测。农药混标在0.005~1.0μg/mL的浓度范围内线性良好,在0.2、0.05μg/mL两个水平添加回收率分别为81.2%~108.6%和89.8%~124.2%,相对标准偏差分别为4.6%~8.7%和5.3%~10.7%。本方法快速、灵敏、准确、可靠,可作为中草药中多种农药残留同时检测的一种方法。  相似文献   

8.
土壤中有机氯农药残留分析用标准样品的制备   总被引:1,自引:0,他引:1  
介绍了土壤中有机氯农药残留分析用标准样品的制备方法。土壤样品经风干、研磨、筛分、混匀后装瓶。样品经索氏提取、弗罗里硅土小柱净化后,采用气相色谱-质谱法对残留的有机氯农药进行测定。结果表明,采自沈阳地区的土壤中的有机氯农药含量分布较为均匀,是一种理想的环境标准样品候选物样品。该研究为土壤中有机氯农药残留分析用标准样品的研制奠定了基础。  相似文献   

9.
毛细管柱气相色谱法测定土壤中的有机氯农药   总被引:5,自引:0,他引:5  
研究了使用毛细管柱气相色谱法测定土壤中有机氯农药的分离条件、萃取方法、净化方法以及用替代品进行全程质量控制的方法。有机氯农药检出限在 1 .1~ 4.0 μg L之间 ,各化合物保留时间的RSD <0 .1 % ,所测定化合物的质量浓度在 0 .0 0 6~ 0 .2 0mg L范围内 ,各物质校正曲线 (浓度与峰面积 )的相关系数在 0 .992 6~ 0 .9971之间。用正己烷 丙酮 ( 1 1 ) 1 0 0mL超声波萃取 ,有机氯农药的萃取回收率在 96.3%~ 1 1 4% ,RSD为 0~ 1 1 %。用国产硅镁吸附剂净化 ,有机氯农药的回收率在 1 0 0 %~ 1 40 %之间 ,弗罗里硅土的回收率在 1 0 4 %~ 1 33%之间 ,硅镁吸附剂可以替代弗罗里硅土用于样品的净化。  相似文献   

10.
基质固相分散-气相色谱/质谱法测定蔬菜中的邻苯二甲酸酯   总被引:13,自引:0,他引:13  
王明林  寇立娟  张玉倩  史衍玺 《色谱》2007,25(4):577-580
利用基质固相分散-气相色谱/质谱法测定了蔬菜中的邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸丁基苄基酯和邻苯二甲酸二异辛酯。蔬菜样品经弗罗里硅土和石墨化炭黑研磨均匀后,用乙酸乙酯淋洗净化,结果表明:上述5种邻苯二甲酸酯在0.05~10.00 mg/L 范围内具有良好的线性,样品的添加回收率为76%~90%,相对标准偏差为2%~7%,5种邻苯二甲酸酯的检出限为0.01~0.024 mg/kg。该方法操作简便、经济,分析速度快,适用于大批量样品的分析。  相似文献   

11.
In this work, a method for the analysis of benzoylurea insecticides, including hexaflumuron, flufenoxuron, lufenuron and chlorfluazuron, in tea samples by high‐performance liquid chromatography with Fe3O4‐hyperbranched polyester nanocomposite as the adsorbent for magnetic solid‐phase extraction was developed. The magnetic nanocomposite was prepared and characterized by infrared spectroscopy, vibrating sample magnetometry, and scanning electron microscopy. The as‐prepared nanocomposite was used as a sorbent for the extraction and preconcentration of pesticide residues in tea samples. The extraction and desorption conditions, including mass ratios of raw materials, amount of sorbent, pH value, extraction time, and desorption time, were investigated. Under the final conditions chosen for the analysis, good linearity was obtained for all the tested compounds, with R2 values of at least 0.9979. The limits of detection were determined in the range of 0.15–0.3 μg/L. The recovery obtained from the analysis of tea samples with various spiked concentrations was between 90.7 and 98.4%, with relative standard deviations (n = 4) lower than 4.1%. Furthermore, the present approach was successfully applied to the quantitative determination of residues of benzoylurea insecticides in real samples.  相似文献   

12.
A simple hydrophilic polyamide organic membrane protected micro‐solid‐phase extraction method with graphene oxide as the sorbent was developed for the enrichment of some parabens from water and vinegar samples prior to gas chromatography with mass spectrometry detection. The main experimental parameters affecting the extraction efficiencies, such as the type and amount of the sorbent, extraction time, stirring rate, salt addition, sample solution pH and desorption conditions, were investigated. Under the optimized experimental conditions, the method showed a good linearity in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/mL for vinegar samples, with the correlation coefficients varying from 0.9978 to 0.9997. The limits of detection (S/N = 3) of the method were in the range of 0.005–0.010 ng/mL for water samples and 0.01–0.05 ng/mL for vinegar samples, respectively. The recoveries of the method for the analytes at spiking levels of 5.0 and 70.0 ng/mL were between 84.6 and 106.4% with the relative standard deviations varying from 4.2 to 9.5%. The results indicated that the developed method could be a practical approach for the determination of paraben residues in water and vinegar samples.  相似文献   

13.
An analytical method based on dispersive solid‐phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass–mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4‐ to 48.7‐fold (theoretical enrichment factor was 50‐fold). The detection limits of pesticides were 0.01~0.77 μg/kg. The linear range was 0.005–0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high‐performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site.  相似文献   

14.
A novel procedure is put forward based on the combination of the well‐established matrix solid‐phase dispersion and the magnetic and sorption properties of magnetic octadecyl in the presence of n‐octanol and was employed in a proof‐of‐concept sample preparation and determination of several classes of pesticide residues in carrots. The procedure does not require the transfer of blend to cartridge and subsequent packing, nor any co‐sorbent for extract clean up. The hydrophobic magnetic nanoparticles utilized as a sorbent, can be retrieved by n‐octanol under the application of a magnetic field due to hydrophobic interactions. Elution of pesticide residues is then carried out with an organic solvent. A total of 26 pesticides were included in this procedure and the target compounds were analyzed using gas chromatography with mass spectrometry in the selective ion monitoring mode. The average extraction recoveries obtained from carrot samples fortified at three different concentrations (20, 50, and 500 μg/kg) were 77–107%. The estimated limits of quantitation for most target analytes were in the low μg/kg level. The study demonstrates that the proposed extraction procedure is simple and effective, avoiding a clean‐up step for the sample preparation of vegetable.  相似文献   

15.
A high‐throughput micro‐solid‐phase extraction device based on a 96‐well plate was constructed and applied to the determination of pesticide residues in various apple samples. Butyl methacrylate and ethylene glycol dimethacrylate were copolymerized as a monolithic polymer and placed in the cylindrically shaped stainless‐steel meshes of 96‐micro‐solid‐phase extraction device and used as an extracting unit. Before the micro‐solid‐phase extraction, microwave‐assisted extraction was employed to facilitate the transfer of the pesticide residues from the apple matrix to liquid media. Then, 1 mL of the aquatic samples was transferred into the 96‐well plate and the 96‐micro‐solid‐phase extraction device was applied for the extraction of the selected pesticides. Influential parameters, such as sorbent‐to‐sorbent reproducibility, microwave‐assisted extraction time, ionic strength and micro‐solid‐phase extraction time, were optimized. The limits of quantitation were below 120 μg/kg, which are lower than the maximum residue limits. The developed method was successfully implemented for the extraction and determination of the selected pesticides from 20 different apple samples gathered from local markets. Phosalone was identified and quantified at the concentration level of 147 (±16.4) μg/kg in one of the samples.  相似文献   

16.
Graphene‐based pipette tip solid‐phase extraction was combined with ultra‐high performance liquid chromatography and tandem mass spectrometry for the determination of carbamate pesticide residues in fruit juice samples. Four milligrams of graphene was used as sorbent material to pack a 1000 μL pipette tip for the extraction of pirimicarb, propoxur, isoprocarb, fenobucarb, and diethofencarb from 3 mL of fruit juice sample. The whole extraction process was finished in 12 min, and the volume of eluent used was only 1.5 mL. Under the optimized conditions, good linear relationship (R > 0.999) and lower limits of detection (0.0022–0.033 ng/mL) were achieved. The recoveries at three spiked levels ranged from 80.90 to 124.60% with relative standard deviations less than 4.88%. Compared with commercially available sorbents including propylsulfonic acid silica, graphitized carbon black, and C18, graphene was superior in extraction efficiency. The proposed method is simple, rapid, sensitive, selective, and solvent saving.  相似文献   

17.
A magnetic solid phase extraction method coupled to capillary electrophoresis is proposed for the determination of tetracycline, oxytetracycline, chlortetracycline and doxycycline in milk samples. Five different magnetic phenyl silica adsorbents covered with magnetite were synthesized by varying the molar ratio of phenyltrimethylsilane and tetramethylorthosilicate; these adsorbents were evaluated in terms of their pH and degree of hydrophobicity for tetracycline retention. The optimal, selected combination of conditions was a pH of 10.0 and a magnetic sorbent ratio of 4:1; under these conditions, the retention capacity ranged from 99.7% to 101.2% for the four tetracyclines analyzed. The elution conditions and initial sample volume of the proposed extraction method were also optimized, and the best results were obtained with 1×10(-3) M acetic acid in methanol as eluent and a 200 ml of sample volume. Under optimal conditions, average recoveries ranged from 94.2% to 99.8% and the limits of detection ranged from 2 to 9 μg l(-1) for the four tetracyclines. After the proposed method was optimized and validated, 25 milk samples of different brands were analyzed, oxytetracycline residues were detected in five samples, in concentrations ranging from 98 to 213 μg l(-1). Subsequent analysis of positive samples by SPE-CE and magnetic solid phase extraction-HPLC revealed than no significant differences were found from results obtained by the proposed methodology. Thus, the developed magnetic extraction is a robust pre-concentration technique that can be coupled to other analytical methods for the quantitative determination of tetracyclines.  相似文献   

18.
A polymerized high internal phase emulsion monolith was used as a novel sorbent for solid‐phase extraction coupled with high‐performance liquid chromatography and fluorescence detection for the determination of oxytetracycline, tetracycline, doxycycline, and chlorotetracycline in environmental water samples. The polymerized high internal phase emulsion monolithic column was prepared by the in situ polymerization of the continuous phase of a high internal phase emulsion containing glycidyl methacrylate, styrene, and divinylbenzene in pipette tips, and then functionalized with iminodiacetic acid. The resulting monolith exhibited highly interconnected porosity and large surface areas, making it an excellent candidate as an solid‐phase extraction sorbent for the enrichment of trace tetracycline antibiotics. Several factors affecting the extraction performance of polymerized high internal phase emulsion monoliths, including the pH of sample solution, the eluting solvents, the sample loading flow rate and volume, were investigated, respectively. Under the optimized conditions, the mean recoveries of oxytetracycline, tetracycline, doxycycline, and chlorotetracycline spiked in pond and farm wastewater samples ranged from 78.1 to 119.3% with relative standard deviation less than 15%. The detection limits (S/N = 3) of the proposed method were in the range of 51–137 pg/mL. This study demonstrated that the monolithic polymerized high internal phase emulsion would be promising solid‐phase extraction sorbents in the extraction and proconcentration of trace analytes from complex samples.  相似文献   

19.
A new analytical procedure using a hollow fiber supported liquid membrane (HFSLM) has been developed for the simultaneous determination of pesticide residues in vegetables by liquid chromatography (LC) coupled with electrospray mass spectrometry (MS). The extraction technique requires minimal sample preparation and solvent consumption. Optimum extraction conditions have been evaluated with respect to sample pH, ionic strength, liquid membrane composition, extraction time, stirring rate and acceptor composition. The extraction method has been validated for matrices such as cucumber, tomato and pepper, indicating that cucumber can be selected as representative matrix for routine analysis of these food commodities. Linear ranges of pesticides in vegetable samples were 10 to 200 microg/kg, and the repeatability of the method was less than 20% for the lowest calibration point. The limits of detection ranged from 0.06 to 2.7 microg/kg and the limits of quantification from 0.2 to 9.0 microg/kg, which were low enough to determine the pesticide residues at concentrations below or equal to the maximum residue levels (MRLs) specified by European Union. The method was finally applied to the determination of more than 20 pesticides in market vegetable samples and the concentrations found in these samples were always lower than the MRLs. This new approach can be considered as a powerful alternative to the traditional extraction techniques.  相似文献   

20.
Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号