首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 879 毫秒
1.
In vivo protein nitration is associated with many disease conditions that involve oxidative stress and inflammatory response. The modification involves addition of a nitro group at the position ortho to the phenol group of tyrosine to give 3-nitrotyrosine. To understand the mechanisms and consequences of protein nitration, it is necessary to develop methods for identification of nitrotyrosine-containing proteins and localization of the sites of modification. Here, we have investigated the electron capture dissociation (ECD) and collision-induced dissociation (CID) behavior of 3-nitrotyrosine-containing peptides. The presence of nitration did not affect the CID behavior of the peptides. For the doubly-charged peptides, addition of nitration severely inhibited the production of ECD sequence fragments. However, ECD of the triply-charged nitrated peptides resulted in some singly-charged sequence fragments. ECD of the nitrated peptides is characterized by multiple losses of small neutral species including hydroxyl radicals, water and ammonia. The origin of the neutral losses has been investigated by use of activated ion (AI) ECD. Loss of ammonia appears to be the result of non-covalent interactions between the nitro group and protonated lysine side-chains.  相似文献   

2.
Oxidative and nitrosative stress leaves footprints in the plant chloroplast in the form of oxidatively modified proteins. Using a mass spectrometric approach, we identified 126 tyrosine and 12 tryptophan nitration sites in 164 nitrated proteolytic peptides, mainly from photosystem I (PSI), photosystem II (PSII), cytochrome b(6) /f and ATP-synthase complexes and 140 oxidation products of tyrosine, tryptophan, proline, phenylalanine and histidine residues. While a high number of nitration sites were found in proteins from four photosynthetic complexes indicating that the nitration belongs to one of the prominent posttranslational protein modifications in photosynthetic apparatus, amino acid oxidation products were determined mostly in PSII and to a lower extent in PSI. Exposure of plants to light stress resulted in an increased level of tyrosine and tryptophan nitration and tryptophan oxidation in proteins of PSII reaction center and the oxygen-evolving complex, as compared to low light conditions. In contrast, the level of nitration and oxidation of these amino acid residues strongly decreased for all light-harvesting proteins of PSII under the same conditions. Based on these data, we propose that oxidative modifications of proteins by reactive oxygen and nitrogen species might represent an important regulatory mechanism of protein turnover under light stress conditions, especially for PSII and its antenna proteins.  相似文献   

3.
In vivo nitration of tyrosine residues is a post-translational modification mediated by peroxynitrite that may be involved in a number of diseases. The aim of this study was to evaluate possibilities for site-specific detection of tyrosine nitration by mass spectrometry. Angiotensin II and bovine serum albumin (BSA) nitrated with tetranitromethane (TNM) were used as model compounds. Three strategies were investigated: (i) analysis of single peptides and protein digests by matrix-assisted laser desorption/ionization (MALDI) peptide mass mapping, (ii) peptide mass mapping by electrospray ionization (ESI) mass spectrometry and (iii) screening for nitration by selective detection of the immonium ion of nitrotyrosine by precursor ion scanning with subsequent sequencing of the modified peptides. The MALDI time-of-flight mass spectrum of nitrated angiotensin II showed an unexpected prompt fragmentation involving the nitro group, in contrast to ESI-MS, where no fragmentation of nitrated angiotensin II was observed. The ESI mass spectra showed that mono- and dinitrated angiotensin II were obtained after treatment with TNM. ESI-MS/MS revealed that the mononitrated angiotensin II was nitrated on the side-chain of tyrosine. The dinitrated angiotensin II contained two nitro groups on the tyrosine residue. Nitration of BSA was confirmed by Western blotting with an antibody against nitrotyrosine and the sites for nitration were investigated by peptide mass mapping after in-gel digestion. Direct mass mapping by ESI revealed that two peptides were nitrated. Precursor ion scanning for the immonium ion for nitrotyrosine revealed two additional partially nitrated peptides. Based on the studies with the two model compounds, we suggest that the investigation of in vivo nitration of tyrosine and identification of nitrated peptides might be performed by precursor ion scanning for the specific immonium ion at m/z 181.06 combined with ESI-MS/MS for identification of the specific nitration sites.  相似文献   

4.
Protein tyrosine nitration is a post-translational modification commonly used as a marker of cellular oxidative stress associated with numerous pathophysiological conditions. We focused on ubiquitin carboxyl terminal hydrolase-L1 (UCH-L1) and glyceraldehyde-3-phosphate (GAPDH) which are high-abundant brain proteins that have been identified to be highly susceptible to oxidative modification. Both UCH-L1 and GAPDH have been linked to the pathogenesis of Alzheimer's and Parkinson's disease, however specific nitration sites have not been elucidated. Identification of specific nitration sites and quantitation of endogenous nitrated proteins are important in correlating this modification to disease pathology. In this study, purified UCH-L1 and GAPDH were nitrated in vitro with peroxynitrite and the presence of nitrated proteins was confirmed by anti-3-nitrotyrosine Western blots. Data-dependent LC-MS/MS analysis identified several distinct tyrosine nitration sites in UCH-L1 (Tyr-80) and GAPDH (Tyr-47, Tyr-92, and Tyr-312). Subsequent validation with synthetic peptides was conducted for selected nitropeptides. An LC-MS/MS method was developed for semi-quantitative determination of the synthetic nitropeptides: KGQEVSPKVY(*) (UCH-L1) and mFQY(*) DSTHGKF (GAPDH). The nitropeptides were detectable in the mid-attomole range and the peak area response was linear over three orders of magnitude. Targeted analysis of endogenous UCH-L1 and GAPDH nitration was then conducted in an in vivo second-hand smoke rat model to evaluate the utility of this approach.  相似文献   

5.
Tyrosine nitration in proteins occurs under physiologic conditions and is increased at disease conditions associated with oxidative stress, such as inflammation and Alzheimer??s disease. Identification and quantification of tyrosine-nitrations are crucial for understanding nitration mechanism(s) and their functional consequences. Mass spectrometry (MS) is best suited to identify nitration sites, but is hampered by low stabilities and modification levels and possible structural changes induced by nitration. In this insight, we discuss methods for identifying and quantifying nitration sites by proteolytic affinity extraction using nitrotyrosine (NT)-specific antibodies, in combination with electrospray-MS. The efficiency of this approach is illustrated by identification of specific nitration sites in two proteins in eosinophil granules from several biological samples, eosinophil-cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). Affinity extraction combined with Edman sequencing enabled the quantification of nitration levels, which were found to be 8?% and 15?% for ECP and EDN, respectively. Structure modeling utilizing available crystal structures and affinity studies using synthetic NT-peptides suggest a tyrosine nitration sequence motif comprising positively charged residues in the vicinity of the NT- residue, located at specific surface- accessible sites of the protein structure. Affinities of Tyr-nitrated peptides from ECP and EDN to NT-antibodies, determined by online bioaffinity- MS, provided nanomolar KD values. In contrast, false-positive identifications of nitrations were obtained in proteins from cystic fibrosis patients upon using NT-specific antibodies, and were shown to be hydroxy-tyrosine modifications. These results demonstrate affinity- mass spectrometry approaches to be essential for unequivocal identification of biological tyrosine nitrations.  相似文献   

6.
Nitration of tyrosine residues in proteins may occur in cells upon oxidative stress and inflammation processes mediated through generation of reactive nitroxyl from peroxynitrite. Tyrosine nitration from oxidative pathways may generate cytotoxic species that cause protein dysfunction and pathogenesis. A number of protein nitrations in vivo have been reported and some specific Tyrosine nitration sites have been recently identified using mass spectrometric methods. High-resolution Fourier transform ion cyclotron resonance mass spectrometry (MALDI) FT-ICR-MS) is shown here to be a highly efficient method in the determination of protein nitrations. Following the identification of nitration of the catalytic site Tyr-430 residue of bovine prostacyclin synthase, we synthesised several model peptides containing both unmodified tyrosine and 3-nitro-tyrosine residues, using solid-phase peptide synthesis (SPPS). The structures of the nitrotyrosine peptides were characterised both by ESI- and by matrix-assisted laser desorption/ionisation (MALDI)-FT-ICR-MS, using a standard ultraviolet (UV) nitrogen nitrogen laser and a 2.97 microm Nd-YAG infrared laser. Using UV-MALDI-MS, 3-nitrotyrosyl-peptides were found to undergo extensive photochemical fragmentation at the nitrophenyl group, which may hamper or prevent the unequivocal identification of Tyr-nitrations in cellular proteins. In contrast, infrared-MALDI-FT-ICR-MS did not produce fragmentation of molecular ions of Tyr-nitrated peptides.  相似文献   

7.
Protein tyrosine nitration is one of the important regulatory mechanisms in various cellular phenomena such as cell adhesion, endo/exo-cytosis of cellular materials, and signal transduction. In the present study, electrospray ionization tandem mass spectrometry (ESI-MS/MS) with a linear ion-trap mass spectrometer was applied for identification of nitrated proteins and localization of the modified tyrosine residues. When angiotensin II(DRVYIHPF) was nitrated in vitro with tetranitromethane (TNM), the mass spectrum showed a shift of +45 Da which corresponded to tyrosine nitration. An additional +29 Da mass shift was also detected by ESI-MS. This differed from nitrated peptide analysis with matrix-associated laser desorption/ionization mass spectrometry (MALDI-MS), which showed oxygen neutral loss from the nitrated tyrosine residues upon laser irradiation. Hence the +29 Da mass shift of the nitrated peptide observed by ESI-MS suggested the introduction of an NO group for nitrosylation of tyrosine residues. To confirm this in vitro nitrosylation on the protein level, bovine serum albumin was in vitro nitrated with TNM and analyzed by ESI-MS/MS. As expected, +29 as well as +45 Da mass shifts were detected, and the +29 Da mass shift was found to correspond to the modification on tyrosine residues by NO. Although the chemical mechanism by which this occurs in ESI-MS is not clear, the +29 Da mass shift could be a new potential marker of nitrosylated peptides.  相似文献   

8.
The reaction products and pathways of protein nitration were studied with bovine serum albumin (BSA) and ovalbumin (OVA) nitrated by liquid tetranitromethane (TNM) or by gaseous nitrogen dioxide and ozone (NO2 + O3). Native and nitrated proteins were enzymatically digested with trypsin, and the tryptic peptides were analyzed by high-performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) using a chip cube nano-flow system (Agilent). Upon nitration by TNM, up to ten of 17 tyrosine residues in BSA and up to five of ten tyrosine residues in OVA could be detected in nitrated form. Upon nitration by NO2 + O3, only three nitrated tyrosine residues were found in BSA. The nitration degrees of individual nitrotyrosine residues (NDY) were determined by site-specific quantification and compared to the total protein nitration degrees (ND) determined by photometric detection of HPLC-DAD. The slopes of the observed linear correlations between NDY and ND varied in the range of ~0.02–2.4 for BSA and ~0.2–1.6 for OVA. They provide information about the relative rates of nitration or reaction probabilities for different tyrosine residues. In BSA, the tyrosine residue Y161 was by far most reactive against NO2 + O3 and one of the four most reactive positions with regard to nitration by TNM. In OVA, all except one tyrosine residue detected in nitrated form exhibited similar reactivities. The observed nitration patterns show how the site selectivity of protein nitration depends on the nitrating agent, reaction conditions, and molecular structure of the protein (primary, secondary, and tertiary).  相似文献   

9.
The formation of nitric oxide (NO) in biological systems has led to the discovery of a number of post- translational protein modifications that can affect biological conditions such as vasodilation. Studies both from our laboratory and others have shown that beside its effect on cGMP generation from soluble guanylate cylcase, NO can produce protein modifications through both S-nitrosylation of cysteine residues. Previously, we have identified the potential S-nitrosylation sites on endothelial NO synthase (eNOS). Thus, the goal of this study was to further increase our understanding of reactive nitrogen protein modifications of eNOS by identifing tyrosine residues within eNOS that are susceptible to nitration in vitro. To accomplish this, nitration was carried out using tetranitromethane followed by tryptic digest of the protein. The resulting tryptic peptides were analyzed by liquid chromatography/mass spectrometry (LC/MS) and the position of nitrated tyrosines in eNOS were identified. The eNOS sequence contains 30 tyrosine residues and our data indicate that multiple tyrosine residues are capable of being nitrated. We could identify 25 of the 30 residues in our tryptic digests and 19 of these were susceptible to nitration. Interstingly, our data identified four tyrosine residues that can be modified by nitration that are located in the region of eNOS responsible for the binding to heat shock protein 90 (Hsp90), which is responsible for ensuring efficient coupling of eNOS.  相似文献   

10.
Often, deregulation of protein activity and turnover by tyrosine nitration drives cells toward pathogenesis. Hence, understanding how the nitration of a protein affects both its function and stability is of outstanding interest. Nowadays, most of the in vitro analyses of nitrated proteins rely on chemical treatment of native proteins with an excess of a chemical reagent. One such reagent, peroxynitrite, stands out for its biological relevance. However, given the excess of the nitrating reagent, the resulting in vitro modification could differ from the physiological nitration. Here, we determine unequivocally the configuration of distinct nitrated‐tyrosine rings in single‐tyrosine mutants of cytochrome c. We aimed to confirm the nitration position by a non‐destructive method. Thus, we have resorted to 1H‐15N heteronuclear single quantum coherence(HSQC) spectra to identify the 3J(N? H) correlation between a 15N‐tagged nitro group and the adjacent aromatic proton. Once the chemical shift of this proton was determined, we compared the 1H‐13C HSQC spectra of untreated and nitrated samples. All tyrosines were nitrated at ε positions, in agreement to previous analysis by indirect techniques. Notably, the various nitrotyrosine residues show a different dynamic behaviour that is consistent with molecular dynamics computations.  相似文献   

11.
Protein tyrosine nitration is associated with oxidative stress and various human diseases. Tandem mass spectrometry has been the method of choice for the identification and localization of this posttranslational modification to understand the underlying mechanisms and functional consequences. Due to the electron predator effect of the nitro group limiting fragmentation of the peptide backbone, electron‐based dissociation has not been applicable, however, to nitrotyrosine‐containing peptides. A straightforward conversion of the nitrotyrosine to the aminotyrosine residues is introduced to address this limitation. When tested with nitrated ubiquitin and human serum albumin as model proteins in top‐down and bottom‐up approaches, respectively, this chemical derivatization enhanced backbone fragmentation of the corresponding nitroproteins and nitropeptides by electron capture dissociation (ECD). Increased sequence coverage has been obtained by combining in the bottom‐up strategy the conversion of nitrotyrosine to aminotyrosine and introducing, in addition to trypsin, a further digesting enzyme of complementary specificity, when protein nitration was mapped by liquid chromatography–electrospray ionization tandem mass spectrometry using both collision‐induced dissociation (CID) and ECD. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Highly purified preparations of thymidylate synthase, isolated from calf thymus, and L1210 parental and FdUrd-resistant cells, were found to be nitrated, as indicated by a specific reaction with anti-nitro-tyrosine antibodies, suggesting this modification to appear endogenously in normal and tumor tissues. Each human, mouse and Ceanorhabditis elegans recombinant TS preparation, incubated in vitro in the presence of NaHCO(3), NaNO(2) and H(2)O(2) at pH 7.5, underwent tyrosine nitration, leading to a V(max)(app) 2-fold lower following nitration of 1 (with human or C. elegans TS) or 2 (with mouse TS) tyrosine residues per monomer. Enzyme interactions with dUMP, meTHF or 5-fluoro-dUMP were not distinctly influenced. Nitration under the same conditions of model tripeptides of a general formula H(2)N-Gly-X-Gly-COOH (X = Phe, Tyr, Trp, Lys, Arg, His, Ser, Thr, Cys, Gly), monitored by NMR spectroscopy, showed formation of nitro-species only for H-Gly-Tyr-Gly-OH and H-Gly-Phe-Gly-OH peptides, the chemical shifts for nitrated H-Gly-Tyr-Gly-OH peptide being in a very good agreement with the strongest peak found in (15)N-(1)H HMBC spectrum of nitrated protein. MS analysis of nitrated human and C. elegans proteins revealed several thymidylate synthase-derived peptides containing nitro-tyrosine (at positions 33, 65, 135, 213, 230, 258 and 301 in the human enzyme) and oxidized cysteine (human protein Cys(210), with catalytically critical Cys(195) remaining apparently unmodified) residues.  相似文献   

13.
The nitration of tyrosine to 3-nitrotyrosine is an oxidative modification of tyrosine by nitric oxide and is associated with many diseases, and targeting of protein kinase G (PKG)-I represents a potential therapeutic strategy for pulmonary hypertension and chronic pain. The direct assignment of tyrosine residues of PKG-I has remained to be made due to the low sensitivity of the current proteomic approach. In order to assign modified tyrosine residues of PKG-I, we nitrated purified PKG-Iα expressed in insect Sf9 cells by use of peroxynitrite in vitro and analyzed the trypsin-digested fragments by matrix-assisted laser desorption/ionization–time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Among the 21 tyrosine residues of PKG-Iα, 16 tyrosine residues were assigned in 13 fragments; and six tyrosine residues were nitrated, those at Y71, Y141, Y212, Y336, Y345, and Y567, in the peroxynitrite-treated sample. Single mutation of tyrosine residues at Y71, Y212, and Y336 to phenylalanine significantly reduced the nitration of PKG-Iα; and four mutations at Y71, Y141, Y212, and Y336 (Y4F mutant) reduced it additively. PKG-Iα activity was inhibited by peroxynitrite in a concentration-dependent manner from 30 μM to 1 mM, and this inhibition was attenuated in the Y4F mutant. These results demonstrated that PKG-Iα was nitrated at multiple tyrosine residues and that its activity was reduced by nitration of these residues.  相似文献   

14.
Often, deregulation of protein activity and turnover by tyrosine nitration drives cells toward pathogenesis. Hence, understanding how the nitration of a protein affects both its function and stability is of outstanding interest. Nowadays, most of the in vitro analyses of nitrated proteins rely on chemical treatment of native proteins with an excess of a chemical reagent. One such reagent, peroxynitrite, stands out for its biological relevance. However, given the excess of the nitrating reagent, the resulting in vitro modification could differ from the physiological nitration. Here, we determine unequivocally the configuration of distinct nitrated-tyrosine rings in single-tyrosine mutants of cytochrome?c. We aimed to confirm the nitration position by a non-destructive method. Thus, we have resorted to (1)H-(15)N heteronuclear single quantum coherence(HSQC) spectra to identify the (3)J(N?H) correlation between a (15)N-tagged nitro group and the adjacent aromatic proton. Once the chemical shift of this proton was determined, we compared the (1)H-(13)C HSQC spectra of untreated and nitrated samples. All tyrosines were nitrated at ε positions, in agreement to previous analysis by indirect techniques. Notably, the various nitrotyrosine residues show a different dynamic behaviour that is consistent with molecular dynamics computations.  相似文献   

15.
Genetically encoding protein oxidative damage   总被引:1,自引:0,他引:1  
Posttranslational modification of tyrosine residues in proteins, to produce 3-nitrotyrosine (3-NT), is associated with over 50 disease states including transplant rejection, lung infection, central nervous system and ocular inflammation shock, cancer, and neurological disorders (for example, Alzheimer's disease, Parkinson's disease, and stroke). The levels of 3-NT increase in aging tissue, and levels of 3-NT in proteins are a predictor of disease risk. Here we report the evolution and characterization of an aminoacyl-tRNA synthetase/tRNA pair for the cotranslational, site-specific incorporation of 3-NT into proteins at genetically encoded sites. To demonstrate the utility of our approach for studying the effect on protein function of nitration on sites defined in vivo, we prepared manganese superoxide dismutase (MnSOD) that is homogeneously nitrated at a site known to be modified in disease-related inflammatory responses, and we measured the effect of this defined modification on protein function.  相似文献   

16.
利用新颖的定量核磁共振(31P NMR)法和免疫印迹法研究了四氧嘧啶诱导的糖尿病状态下以及酪氨酸经过氧亚硝酸根供体SIN-1硝化条件下大鼠肝脏胰岛素受体(IR)的自磷酸化和受体底物1(IRS1)的磷酸化。结果表明,四氧嘧啶诱导的糖尿病大鼠肝脏中IR自磷酸化水平削弱了,硝化对大鼠肝脏中IR自磷酸化的影响依赖于SIN-1浓度,根据IRS1磷酸化位点基序设计的多肽的硝化完全抑制了其磷酸化,提示酪氨酸硝化可能干扰胰岛素磷酸化信号通路。  相似文献   

17.
Both oxidative stress and aggregation of the protein α-synuclein (aS) have been implicated as key factors in the etiology of Parkinson's disease. Specifically, oxidative modifications to aS disrupt its binding to lipid membranes, an interaction considered critical to its native function. Here we seek to provide a mechanistic explanation for this phenomenon by investigating the effects of oxidative nitration of tyrosine residues on the structure of aS and its interaction with lipid membranes. Membrane binding is mediated by the first ~95 residues of aS. We find that nitration of the single tyrosine (Y39) in this domain disrupts binding due to electrostatic repulsion. Moreover, we observe that nitration of the three tyrosines (Y125/133/136) in the C-terminal domain is equally effective in perturbing binding, an intriguing result given that the C-terminus is not thought to interact directly with the lipid bilayer. Our investigations show that tyrosine nitration results in a change of the conformational states populated by aS in solution, with the most prominent changes occurring in the C-terminal region. These results lead us to suggest that nitration of Y125/133/136 reduces the membrane-binding affinity of aS through allosteric coupling by altering the ensemble of conformational states and depopulating those capable of membrane binding. While allostery is a well-established concept for structured proteins, it has only recently been discussed in the context of disordered proteins. We propose that allosteric regulation through modification of specific residues in, or ligand binding to, the C-terminus may even be a general mechanism for modulating aS function.  相似文献   

18.

Background

Free radicals cause alterations in cellular protein structure and function. Oxidized, nitrated, and chlorinated modifications of aromatic amino acids including phenylalanine and tyrosine are reliable biomarkers of oxidative stress and inflammation in clinical conditions.

Objective

To develop, validate and apply a rapid method for the quantification of known hallmarks of tyrosine oxidation, nitration and chlorination in plasma and tissue proteins providing a snapshot of the oxidative stress and inflammatory status of the organism and of target organs respectively.

Material and Methods

The extraction and clean up procedure entailed protein precipitation, followed by protein re-suspension and enzymatic digestion with pronase. An Ultra Performance Liquid Chromatography–tandem Mass Spectrometry (UPLC-MS/MS) method was developed to quantify protein released ortho-tyrosine (o-Tyr), meta-tyrosine (m-Tyr), 3-nitrotyrosine (3NO2-Tyr) and 3-chlorotyrosine (3Cl-Tyr) as well as native phenylalanine (Phe) and tyrosine (p-Tyr) in plasma and tissue from a validated hypoxic newborn piglet experimental model.

Results

In plasma there was a significant increase in the 3NO2-Tyr/p-Tyr ratio. On the other hand m-Tyr/Phe and 3Cl-Tyr/p-Tyr ratios were significantly increased in liver of hypoxic compared with normoxic animals. Although no significant differences were found in brain tissue, a clear tendency to increased ratios was observed under hypoxic conditions.

Conclusions

UPLC-MS/MS has proven suitable for the analysis of plasma and tissue samples from newborn piglets. The analysis of biomarkers of protein oxidation, nitration and chlorination will be applied in future studies aiming to provide a deeper insight into the mechanisms of oxidation-derived protein modification caused during neonatal asphyxia and resuscitation.  相似文献   

19.
Protein tyrosine nitration is a selective process, as revealed in studies of animals. However, evidence for selective protein nitration in plants is scarce. In this study, Arabidopsis plants were exposed to air with or without nitrogen dioxide at 40 ppm for 8 h in light. Proteins extracted from whole leaves or isolated chloroplasts were subjected to 2D PAGE followed by SYPRO Ruby staining and immunoblotting using an anti‐3‐nitrotyrosine antibody. We determined the relative intensity of a spot on an immunoblot (designated RISI), and relative intensity of the corresponding spot on SYPRO Ruby gel (designated RISS). Proteins that exhibited a high RISI value and/or a high RISI/RISS ratio were considered selectively nitrated. In whole leaf proteins from exposed plants, all immunopositive spots were identified as PsbO1, PsbO2 or PsbP1 by PMF. Thus, nitration was exclusive to PsbO and PsbP, extrinsic proteins of photosystem II (PSII). Their RISI/RISS ratio was ≤1.5. Non‐exposed plants showed very faint nitration. In purified chloroplast proteins, PsbO and PsbP accounted for >80% of the total RISI values, while four non‐PSII proteins, including peroxiredoxin II E, exhibited high RISI/RISS ratios (2.5~6.6). Tyr9 of PsbO1 was identified as a nitration site. Thus, nitration is selective for two PSII and four non‐PSII proteins in Arabidopsis.  相似文献   

20.
Protein carbonyls are one of the most widely studied markers of oxidative stress. Determining increases in the concentration of protein carbonyls known to be associated with neurodegenerative diseases, heart disease, cancer and ageing. Identification of carbonylation sites in oxidized proteins has been a challenge. Even though recent advances in proteomics has facilitate the identification of carbonylation sites in oxidized proteins, confident identification remains a challenge due to the complicated nature of oxidative damage and the wide range of oxidative modifications. Here, we report the development of a multiplexing strategy that facilitates confident carbonylated peptide identification through a combination of heavy and light isotope coding and a multi-step filtering process. This procedure involves (1) labeling aliquots of oxidized proteins with heavy and light forms of Girard's reagent P (GPR) and combining them in a 1:1 ratio along with (2) LC/MS and MALDI-MS/MS analysis. The filtering process uses LC/MS and MALDI-MS/MS data to rule out false positives by rejecting peptide doublets that do not appear with the correct concentration ratio, retention time, tag number, or resolution. This strategy was used for the identification of heavily oxidized transferrin peptides and resulted in identification 13 distinct peptides. The competency of the method was validated in a complex mixture using oxidized transferrin in a yeast lysate as well as oxidized yeast. Twenty-five percent of the peptides identified in a pure oxidized sample of transferrin were successfully identified from the complex mixture. Analysis of yeast proteome stressed with hydrogen peroxide using this multiplexing strategy resulted in identification of 41 carbonylated peptides from 36 distinct proteins. Differential isotope coding of model peptides at different concentrations followed by mixing at different ratios was used to establish the linear dynamic range for quantification of carbonylated peptides using light and heavy forms of GPR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号