首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proline dipeptides (Xaa-Pro) exist as an equilibrium mixture of cis- and trans-rotamers, which depends on the energy barriers for imide isomerization. This conformation mixture contributes to both structure and function of proline-containing peptides and proteins. Structural motifs resembling these cis- or trans-conformers have served as useful tools for elucidating contributions of proline residues in the physicochemical and biological profiles of structures which contain them. Among such motifs are alkene dipeptide isosteres which mimic cis- or trans-imide using (Z)- or (E)-alkene, respectively. In this report, the first regio- and stereoselective syntheses of (E)-alkene dipeptide isosteres (20, 31, and 35) corresponding to trans-proline dipeptides are described. Key to the synthesis of these mimetics is the anti-S(N)2' reaction of vinyl aziridines such as 15 or vinyl oxazolidinones such as 28 and 32 with organocopper reagents "RCu" (R = CH(2)SiMe(2)(Oi-Pr)). Reaction of cis-vinylaziridine 15 derived from L-serine with organocopper reagent gave a precursor of the trans-L-Ser-D-Pro type alkene isosteres 20, accompanied by an S(N)2 side product. One limitation with the use of such aziridine-mediated methodology is formation of the corresponding trans-aziridine 22, which leads to L-L type isosteres, that is unstable and obtainable only in low yield. On the other hand, both isomers of oxazolidinone derivatives can be easily obtained from N-Boc-protected amino alcohols. The reaction of trans- 28 or cis-oxazolidinone derivative 32 with organocopper reagents proceeds quantitatively with high regio- and diastereoselectivities in anti-S(N)2' fashion. Subsequent oxidative treatment of the newly introduced isopropoxydimethylsilylmethyl group yields trans-L-Ser-L-Pro 31 or trans-L-Ser-D-Pro type isosteres 35, respectively. Of note, synthesized isostere 31 can also be converted to trans-phosphoSer-Pro 42 and trans-Cys-Pro mimetics 44. The present synthetic methodology affords trans-Xaa-Pro alkene-type dipeptide isosteres in high yield with relatively simple manipulation.  相似文献   

2.
(E)-Alkene units are frequently found in macrocyclic natural products. Among the reactions that form the double bond during the cyclization, the classical Horner-Emmons coupling is still frequently used with success. During the last decade, ring-closing metathesis has emerged as a very powerful tool for the synthesis of large rings, but the E/Z selectivity, which is rarely predictable, depends on many factors which will be discussed in this review. The best solution might be a two-step procedure involving ring-closing alkyne metathesis (RCAM) followed by stereoselective reduction of the macrocyclic alkyne unit to the corresponding E double bond.  相似文献   

3.
[structure: see text] Collagen is the most abundant protein in animals. Interstrand N-H...O=C hydrogen bonds between backbone amide groups form a ladder in the middle of the collagen triple helix. Isosteric replacement of the hydrogen-bond-donating amide with an ester or (E)-alkene markedly decreases the conformational stability of the triple helix. Thus, this recurring hydrogen bond is critical to the structural integrity of collagen. In this context, an ester isostere confers more stability than does an (E)-alkene.  相似文献   

4.
5.
[reaction: see text] Described is a novel synthetic route for dipeptide isosteres containing (Z)-alkene and (E)-fluoroalkene units as cis-amide bond equivalents via organocopper-mediated reduction of gamma-acetoxy- or gamma,gamma-difluoro-alpha,beta-unsaturated-delta-lactams. The synthesized isosteres were evaluated in terms of their affinities for the peptide transporter PEPT1. trans-Amide isosteres tended to possess higher affinities for PEPT1 as compared to the corresponding cis-amide bond equivalents.  相似文献   

6.
《Tetrahedron: Asymmetry》2005,16(18):3107-3114
The total syntheses of the enantiomers of two novel brominated polyacetylenic natural products diplynes C and E are reported. Pd and Cu(I)-catalyzed coupling reactions were employed to synthesize the diyne and enyne units. The stereochemistry of the terminal (E)-alkenyl bromide in diplyne C was constructed stereoselectively using Brown’s hydroboration–bromination procedure. The stereochemistry of the internal (E)-double bond in diplyne E was established using a Takai reaction. The stereocenter was derived from d-mannitol.  相似文献   

7.
A series of four new potential renin inhibitors has been synthesized. The structure of the compounds was designed in such a way as to produce agents resistant to enzymatic degradation, metabolically stable, possibly potent and with improved oral absorption. All positions of the 8-13 fragment of the human angiotensinogen were occupied by unnatural units (two unnatural amino acids in positions P(3) and P(2) and two pseudodipeptides in positions P(1)-P(1') and P(2')-P(3')). Both N- and C-terminal functions of the inhibitors were blocked with tert-Boc and ethyl ester groups. Their hydrophobicity evaluated as a log P value, calculated by a computer method, was 6.57 and 6.08 respectively. All peptides were obtained by the carbodiimide method in solution and purified by chromatography on the SiO(2) column. Their resistance to enzymatic degradation was assayed by determination of stability against chymotrypsin activity. The potency was measured in vitro by a spectrofluorimetric method (assay of Leu-Val-Tyr-Ser released from the N-acetyltetradecapeptide substrate by renin in the presence of the inhibitor). All inhibitors were stable to chymotrypsin. Their IC(50) (M/l) values were: 9.6 x 10(-4) (12), 1.6 x 10(-5) (17), 1.0 x 10(-5) (22) and 1.0 x 10(-5) (23) respectively.  相似文献   

8.
Glycals are highly versatile and useful building blocks in the chemistry of carbohydrate and natural products. However, the practical synthesis of glycals remains a long-standing and mostly unsolved problem in synthetic chemistry. Herein, we present an unprecedented approach to make a variety of glycals using phosphonium hydrolysis-induced, P(v) intermediate-mediated E1cB elimination. The method provides a highly efficient, practical and scalable strategy for the synthesis of glycals with good generality and excellent yields. Furthermore, the strategy was successfully applied to late-stage modification of complex drug-like molecules. Additionally, the corresponding 1-deuterium-glycals were produced easily by simple tBuONa/D2O-hydrolysis–elimination. Mechanistic investigations indicated that the oxaphosphorane intermediate-mediated E1cB mechanism is responsible for the elimination reaction.

A novel glucosylphosphonium-hydrolysis induced E1cB-elimination provides a highly efficient, practical and scalable method for the synthesis of glycals with good compatibility and excellent yields.  相似文献   

9.
《Tetrahedron letters》1986,27(5):603-606
Highly stereoselective synthesis of (2E,4E)-dienamides and (2E,4E)-dienoates was achieved through a double elimination reaction of β-acetoxy sulfones.  相似文献   

10.
Two new amide isosteres of Ser-cis-Pro and Ser-trans-Pro dipeptides were designed and stereoselectively synthesized to be incorporated into potential inhibitors of the phosphorylation-dependent peptidylprolyl isomerase Pin1, an essential regulator of the cell cycle. The cis mimic, the (Z)-alkene isomer, was formed through the use of a Still-Wittig [2,3]-sigmatropic rearrangement, while the trans mimic, the (E)-alkene, was synthesized through the use of an Ireland-Claisen [3,3]-sigmatropic rearrangement. Starting from N-Boc-Ser(OBn)-N(OMe)Me, both mimics were synthesized in Boc-protected form suitable for peptide synthesis with an overall yield of 20% in 10 steps for the cis mimic and 13% in eight steps for the trans mimic.  相似文献   

11.
12.
We have previously used trisubstituted cyclopropanes as peptide replacements to induce conformational constraints in known pseudopeptide inhibitors of a number of important enzymes. Cyclopropane-derived peptide mimics are novel in that they are among the few replacements that locally orient the peptide backbone and the amino acid side chain in a predefined manner. Although these dipeptide isosteres have been employed to orient amino acid side chains mimicking the gauche(-) conformation of chi(1)-space, their ability to project the side chains into an anti orientation has not been evaluated. As a first step toward this goal, the conformationally constrained pseudopeptides 8 and 10 and their corresponding flexible analogues 9 and 11 were prepared and tested as inhibitors of matrix metalloproteinases (MMPs). These compounds are analogues of 4 and 5, which were known to be potent MMP inhibitors. The anti orientations of the isopropyl side chain in 8 and the aromatic ring in 10 relative to the peptide backbone substituents on the cyclopropane were predicted to correspond to the known orientations of the P1' and P2' side chains of 5 when bound to MMPs. Hence, 8 and 10 were designed explicitly to probe topological features of the S1' or the S2' binding pockets of the MMPs. They were also designed to explore the importance of the P1'-P2' amide group, which is known to form highly conserved hydrogen bonds in several MMP-inhibitor complexes, and the viability of introducing a retro amide linkage between P2' and P3'. Pseudopeptides 8 and 9 were found to be weak competitive inhibitors of a series of MMPs. Any entropically favorable conformational constraints that were induced by the cyclopropane in 8 were thus overwhelmed by the loss of the hydrogen bonding capability associated with the P1'-P2' amide group. On the other hand, compounds 10 and 11, which contain a P2'-P3' retro amide group, were modest competitive inhibitors of a series of MMPs. The results obtained for 10 and 11 suggest that there may be a loss of hydrogen bonding capability associated with introducing the P2'-P3' retro amide group. However, because the conformationally constrained pseudopeptide 10 was significantly more potent than its flexible analogue 11, trisubstituted cyclopropanes related to 3 may serve as useful rigid dipeptide replacements in some biologically active pseudopeptides.  相似文献   

13.
We report the enantioselective total synthesis of cribrostatin IV (1). Key features of this synthesis involve the convergent coupling of two highly functionalized homochiral components followed by a "lynchpin" Mannich cyclization to establish the pentacyclic core (cf. 19 --> 20).  相似文献   

14.
15.
Preferential formation of less stable (endo) product in intramolecular Michael reaction is explained by the participation of structurally remote OH group in the transition state.  相似文献   

16.
Calter MA  Bi FC 《Organic letters》2000,2(11):1529-1531
[reaction--see text] This paper describes a catalytic, asymmetric approach to the C(1)(')-C(10)(') segment of pamamycin 621A. We synthesize this segment in a convergent manner, with each of the coupling partners ultimately deriving from enantiomerically enriched methylketene dimer.  相似文献   

17.
18.
[reaction: see text] The most recently described member of the cacospongionolide class of marine natural products has been assembled using a diastereochemically divergent total synthesis strategy that independently establishes the complete stereochemistry of cacospongionolide F and provides a new entry toward expansion of this phospholipase A(2) inhibitor chemotype.  相似文献   

19.
A general and efficient procedure for the stereoselective synthesis of (E)-(1-propenyl)phenyl esters from readily accessible allylphenols has been developed. The process involves a two-step sequence consisting of the initial acylation of the allylphenols with an acid chloride, followed by catalytic CC bond isomerization in the resulting allylphenyl esters. The latter step was performed in methanol at 80 °C using catalytic amounts (0.5 mol %) of the commercially available bis(allyl)-ruthenium(IV) dimer [{RuCl(μ-Cl)(η33-C10H16)}2] (C10H16=2,7-dimethylocta-2,6-diene-1,8-diyl). Reactions proceeded in high yields (68–93%) and short times (4–9 h) with complete E-selectivity.  相似文献   

20.
Metallation of hexahydropyrimidopyrimidine (hppH) by [Fe{N(SiMe(3))(2)}(2)] (1) produces the trimetallic iron(II) amide cage complex [{(Me(3)Si)(2)NFe}(2)(hpp)(4)Fe] (2), which contains three iron(II) centers, each of which resides in a distorted tetrahedral environment. An alternative, one-pot route that avoids use of the highly air-sensitive complex 1 is described for the synthesis of the iron(II)-lithium complex [{(Me(3)Si)(2)N}(2)Fe{Li(bta)}](2) (3) (where btaH = benzotriazole), in which both iron(II) centers reside in 3-coordinated pyramidal environments. The structure of 3 is also interpreted in terms of the ring laddering principle developed for alkali metal amides. Magnetic susceptibility measurements reveal that both compounds display very weak antiferromagnetic exchange between the iron(II) centers, and that the iron(II) centers in 2 and 3 possess large negative axial zero-field splittings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号