首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
时域边界元法分析撞水响应   总被引:6,自引:1,他引:6  
基于势流理论,考虑流场的可压缩性,首先利用积分变换导得了势流问题的一个动力学倒易定理,在此基础上,进而求得问题对应的时空边界积分方程,然后通过对边界和时间轴同时离散,建立了一组有递推形式的时间边界元方程最后结合液面条件和物体运动方程耦全求解得到了刚体的撞水响应。  相似文献   

2.
In this paper, we present an immersed boundary method for solving fluid flow problems in the presence of static and moving rigid objects. A FEM is used starting from a base mesh that does not represent exactly rigid objects (non?body?conforming mesh). At each time step, the base mesh is locally modified to provide a new mesh fitting the boundary of the rigid objects. The mesh is also locally improved using edge swapping to enhance the quality of the elements. The Navier–Stokes equations are then solved on this new mesh. The velocity of moving objects is imposed through standard Dirichlet boundary conditions. We consider a number of test problems and compare the numerical solutions with those obtained on classical body?fitted meshes whenever possible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
We consider the two-dimensional motion of several non-homogeneous rigid bodies immersed in an incompressible non-homogeneous viscous fluid. The fluid, and the rigid bodies are contained in a fixed open bounded set of ?2. The motion of the fluid is governed by the Navier-Stokes equations for incompressible fluids and the standard conservation laws of linear and angular momentum rule the dynamics of the rigid bodies. The time variation of the fluid domain (due to the motion of the rigid bodies) is not known a priori, so we deal with a free boundary value problem. The main novelty here is thedemonstration of the global existence of weak solutions for this problem. More precisely, the global character of the solutions we obtain is due to the fact that we do not need any assumption concerning the lack of collisions between several rigid bodies or between a rigid body and the boundary. We give estimates of the velocity of the bodies when their mutual distance or the distance to the boundary tends to zero.  相似文献   

4.
时变边界的变质量刚体的动力学方程   总被引:4,自引:0,他引:4  
讨论一类变质量刚体(即在其边界与外部进行质量交换,从而具有时变边界)的动力学问题,并建立了时变边界的刚体动力学普遍方程。  相似文献   

5.
This work presents a theoretical model to calculate the acoustic radiation force on a rigid cylindrical particle immersed in an ideal fluid near a boundary for an on-axis Gaussian beam. An exact solution of the axial acoustic radiation force function is derived for a cylindrical particle by applying the translation addition theorem of cylindrical Bessel function. We analyzed the effects of the impedance boundary on acoustic radiation force of a rigid cylinder immersed in water near an impedance boundary with particular emphasis on the radius of the rigid cylinder and the distance from the cylinder center to impedance boundary. Simulation results reveal that the existence of particle trapping behavior depends on the choice of nondimensional frequency as well as the offset distance from the impedance boundary. The value of the radiation force function varies when the cylinder lies at the different position of the on-axis Gaussian beam. For the particle with different radius, the acoustic radiation force functions vary significantly with frequency. This study provides a theoretical basis for acoustic manipulation, which may benefit to the improvement and development of the acoustic control technology.  相似文献   

6.
We consider the problem of time- and energy consumption-optimal turn of a rigid body with spherical mass distribution under arbitrary boundary conditions on the angular position and angular velocity of the rigid body. The optimal turn problem is modified in the class of generalized conical motions, which allows one to obtain closed-form solutions for equations of motion with arbitrary constants. Thus, solving the optimal control boundary value problem is reduced to solving a system of nonlinear algebraic equations for the constants. Numerical examples are considered to illustrate the proximity between the solutions of the traditional and modified problems of optimal turn of a rigid body.  相似文献   

7.
In this paper we study the motion of a self-propelled rigid body through a Navier-Stokes fluid that fills all the three-dimensional space exterior to it. We formulate the problem and prove the existence of a weak solution that is defined globally in time, provided that the net flux across the boundary, of the prescribed boundary values for the velocity, is zero. It is these prescribed boundary values that propel the body, and the body is free to rotate during its motion. In the special case of a body which is symmetric about an axis, and propelled by symmetric boundary values, we obtain strong solutions representing translational motions in the direction of the axis. Further, we prove that for small Reynolds numbers every steady solution with such axial symmetry is attainable as the limit, as time tends to infinity, of a strong nonsteady solution which starts from rest.  相似文献   

8.
GREEN'SFUNCTIONSOFTWO-DIMENSIONALANISOTROPIC BODY WITH A PARABOLIC BOUNDARY(胡元太)(赵兴华)GREEN'SFUNCTIONSOFTWO-DIMENSIONALANISOTROP?..  相似文献   

9.
The Stroh formalism is most elegant when the boundary conditions are simple, namely, they are prescribed in terms of traction or displacement. For mixed boundary conditions such as there for a slippery boundary, the concise matrix expressions of the Stroh formalism are destroyed. We present a generalized Stroh formalism which is applicable to a class of general boundary conditions. The general boundary conditions include the simple and slippery boundary conditions as special cases. For Green's functions for the half space, the general solution is applicable to the case when the surface of the half-space is a fixed, a free, a slippery, or other more general boundary. For the Griffith crack in the infinite space, the crack can be a slit-like crack with free surfaces, a rigid line inclusion (which is sometimes called an anticrack), or a rigid line with slippery surface or with other general surface conditions. It is worth mention that the modifications required on the Stroh formalism are minor. The generalized formalism and the final solutions look very similar to those of unmodified version. Yet the results are applicable to a rather wide range of boundary conditions.  相似文献   

10.
各向异性弹性力学一般边值问题的广义Stroh公式   总被引:1,自引:1,他引:1  
丁启财  王敏中 《力学学报》1993,25(3):283-301
当边值问题是简单的,即是应力边值问题时,Stroh公式是很有效的。对于混合边值问题,倒如滑动边界条件,Stroh公式中的简洁的矩阵表达式就失效了。我们提出了一个广义的Stroh公式,它可应用于一大类一般的边界条件。简单的边界条件和滑动边界条件是这一类一般边界条件的特殊情形。值得指出的是,这个关于Stroh公式所作的修正并不大。广义的公式和最后的解答看起来很类似于未修正的原公式和原来的解。然而这个修正却可应用于相当广的边界条件。  相似文献   

11.
The reflection of stress waves from the conical end of a rod which is placed against a “rigid” wall is investigated. The reflection takes place at the lateral surface of the cone and at the cone-“rigid” wall boundary at low stress amplitudes. When the sum of the amplitudes of the amplified incident and reflected pulses reach the elastic limit near the cone-“rigid” wall boundary, a part of the pulse is reflected at the resulting elasto-plastic boundary.  相似文献   

12.
The objective of this investigation is to examine the correctness and efficiency of the choice of boundary conditions when using assumed mode approach to simulate flexible multi-body systems. The displacement field due to deformation is approximated by the Rayleigh-Ritz assumed modes in floating frame of reference (FFR) formulation. The deformations obtained by the absolute nodal coordinate (ANC) formulation which are transformed by two sets of reference coordinates are introduced as a criterion to verify the accuracy of the simulation results by using the FFR formulation. The relationship between the deformations obtained from different boundary conditions is revealed. Numerical simulation examples demonstrate that the assumed modes with cantilevered-free, simply-supported and freefree boundary conditions without inclusion of rigid body modes are suitable for simulation of flexible multi-body system with large over all motion, and the same physical deformation can be obtained using those mode functions, differ only by a coordinate transformation. It is also shown that when using mode shapes with statically indeterminate boundary conditions, significant error may occur. Furthermore, the slider crank mechanism with rigid crank is accurate enough for investigating boundary condition problem of flexible multi-body system, which cost significant less simulating time.  相似文献   

13.
A novel implicit immersed boundary method of high accuracy and efficiency is presented for the simulation of incompressible viscous flow over complex stationary or moving solid boundaries. A boundary force is often introduced in many immersed boundary methods to mimic the presence of solid boundary, such that the overall simulation can be performed on a simple Cartesian grid. The current method inherits this idea and considers the boundary force as a Lagrange multiplier to enforce the no‐slip constraint at the solid boundary, instead of applying constitutional relations for rigid bodies. Hence excessive constraint on the time step is circumvented, and the time step only depends on the discretization of fluid Navier‐Stokes equations, like the CFL condition in present work. To determine the boundary force, an additional moving force equation is derived. The dimension of this derived system is proportional to the number of Lagrangian points describing the solid boundaries, which makes the method very suitable for moving boundary problems since the time for matrix update and system solving is not significant. The force coefficient matrix is made symmetric and positive definite so that the conjugate gradient method can solve the system quickly. The proposed immersed boundary method is incorporated into the fluid solver with a second‐order accurate projection method as a plug‐in. The overall scheme is handled under an efficient fractional step framework, namely, prediction, forcing, and projection. Various simulations are performed to validate current method, and the results compare well with previous experimental and numerical studies.  相似文献   

14.
The collapse stage of cavitation bubble development near a conical rigid boundary is investigated in detail by a finite-volume method and the volume of fluid method. The obtained results reveal the effect of the angle of the conical boundary on the bubble shape and the collapse time, as well as liquid jet formation. The degree of departure of the bubble shape from spherical one and the collapse time are found to increase with the increase of cone angle. The relationship between the prolongation factor of the collapse time near a conical boundary and the cone angle is proposed, and theoretical values of the collapse time are calculated. Good agreement is found between the theoretical values and the values obtained from simulations using a finite-volume method.  相似文献   

15.
基于经典的复合材料层板理论,将有限大复合材料层板等效成各向异性弹性平板。采用复变函数理论中的Faber级数分析方法,使用最小二乘边界配点法,对含多椭圆刚性核有限大各向异性板弯曲问题进行应力分析,得到了该问题的级数解形式,分析了含椭圆刚性核层板在弯曲载荷下的应力分布,并讨论了形状和结构参数对应力分布的影响。结果表明,本文方法对于分析含多个椭圆形刚性核有限大薄板弯曲应力问题非常有效,该方法具有精度高及计算方便等优点。  相似文献   

16.
The rapid development of high-speed trains like the TGV or the ICE in recent years results in high dynamic loads causing vibrations which propagate from the train-track structure into the ground and further into nearby buildings. In this context it is important to develop rigid tracks with improved dynamic behaviour and to investigate possible means of vibration reduction. The boundary element method in frequency and time domain is used to simulate train-track structures subjected to dynamic loading and the reduction of vibrations which for instance can be achieved via a trench running parallel to the rigid track. In this context the non-causality error, which arises when the time-domain BEM algorithm is applied to mathematically concave domains, is discussed and the substructure method is proposed as a solution to this problem. A two-layered cylindrical elastic structure on a half-space with a trench is added as an example of a possible application.  相似文献   

17.
柔性壁面湍流边界层相干结构控制的实验研究   总被引:3,自引:0,他引:3  
本文利用热膜测速技术对刚性壁面和柔性壁面湍流边界层的流向速度分量进行了实验测量,首先研究了柔性壁面对平均速度分布和湍流度分布的影响,结果表明:柔性壁面的边界层速度分布在对数律层向上有所平移,缓冲层加厚,具有一般的壁面减阻特征;而柔性壁的湍流度比刚性壁的湍流度要低,分布也更为平坦。然后综合运用自相关法和条件采样技术研究了湍流近壁区的相干结构,结果表明:刚性壁自相关曲线的第二峰值出现的时间比柔性壁的短,柔性壁的猝发频率比刚性壁的低许多。实验结果表明柔性壁面具有一定的减阻作用。  相似文献   

18.
The paper is concerned with a control of thin rigid inclusion and crack shapes in elastic bodies. It is assumed that rigid inclusions are delaminated; thus, cracks are located on the boundary of inclusions as well as outside of inclusions. We provide the problem formulations and analyze the shape sensitivity with respect to geometrical perturbations in the frame of free boundary models. Inequality type boundary conditions are considered at the crack faces to guarantee a mutual non-penetration between crack faces. Inclusion and crack shapes are considered as control functions. The cost functional, which is based on the Griffith rupture criterion, characterizes the energy release rate and provides the shape sensitivity with respect to a change of the geometry of the structure. We prove an existence of optimal shapes in the problems considered.  相似文献   

19.
We prove the existence of global-in-time weak solutions to a model describing the motion of several rigid bodies in a viscous compressible fluid. Unlike most recent results of similar type, there is no restriction on the existence time, regardless of possible collisions of two or more rigid bodies and/or a contact of the bodies with the boundary. (Accepted September 23, 2002) Published online February 4, 2003 Communicated by Y. Brenier  相似文献   

20.
Methods that treat rigid/flexible multibody systems undergoing large motion as well as deformations are often accompanied with inefficiencies and instabilities in the numerical solution due to the large number of state variables, differences in the magnitudes of the rigid and flexible body coordinates, and the time dependencies of the mass and stiffness matrices. The kineto-static methodology of this paper treats a multibody mechanical system to consist of two collections of bulky (rigid) bodies and relatively flexible ones. A mixed boundary condition nonlinear finite element problem is then formulated at each time step whose known quantities are the displacements of the nodes at the boundary of rigid and flexible bodies and its unknowns are the deformed shape of the entire structure and the loads (forces and moments) at the boundary. Partitioning techniques are used to solve the systems of equations for the unknowns, and the numerical solution of the rigid multibody system governing equations of motion is carried out. The methodology is very much suitable in modelling and predicting the impact responses of multibody system since both nonlinear and large gross motion as well as deformations are encountered. Therefore, it has been adopted for the studies of the dynamic responses of ground vehicle or aircraft occupants in different crash scenarios. The kineto-static methodology is used to determine the large motion of the rigid segments of the occupant such as the limbs and the small deformations of the flexible bodies such as the spinal column. One of the most dangerous modes of injury is the amount of compressive load that the spine experiences. Based on the developed method, a mathematical model of the occupant with a nonlinear finite element model of the lumbar spine is developed for a Hybrid II (Part 572) anthropomorphic test dummy. The lumbar spine model is then incorporated into a gross motion occupant model. The analytical results are correlated with the experimental results from the impact sled test of the dummy/seat/restraint system. With this extended occupant model containing the lumbar spine, the gross motion of occupant segments, including displacements, velocities and accelerations as well as spinal axial loads, bending moments, shear forces, internal forces, nodal forces, and deformation time histories are evaluated. This detailed information helps in assessing the level of spinal injury, determining mechanisms of spinal injury, and designing better occupant safety devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号