首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method for the determination of peroxynitrite using folic acid as a fluorescent probe is described. The method is based on the oxidation of the reduced, low-fluorescent folic acid by peroxynitrite to produce a high-fluorescent emission product. The fluorescence increase is linearly related to the concentration of peroxynitrite in the range of 3 × 10−8 to 5.0 × 10−6 mol L−1 with a correlation coefficient of 0.998, and the detection limit is 1 × 10−8 mol L−1. Interferences from some metal ions normally seen in biological samples, and also some anions structurally similar to peroxynitrite were studied. The optimal conditions for the detection of peroxynitrite were evaluated.  相似文献   

2.
3.
4.
Two isostructural 3-D complexes [Ln(pdc)(ox)0.5(H2O)2]?H2O (Ln = Tb(1), Eu(2); pdc = 3,5-pyrazoledicarboxylate; ox = oxalate) have been synthesized under hydrothermal conditions. Both are characterized by single crystal X-ray diffraction, elemental analysis, and IR. Compounds 1 and 2 possess a 3-D framework with 1-D rectangular channels built from 2-D, brick-like networks, and pdc ligands. The photoluminescence and lifetimes of 1 and 2 in the solid state have been studied.  相似文献   

5.
Taking advantage of luminescent lanthanide ions   总被引:6,自引:0,他引:6  
Lanthanide ions possess fascinating optical properties and their discovery, first industrial uses and present high technological applications are largely governed by their interaction with light. Lighting devices (economical luminescent lamps, light emitting diodes), television and computer displays, optical fibres, optical amplifiers, lasers, as well as responsive luminescent stains for biomedical analysis, medical diagnosis, and cell imaging rely heavily on lanthanide ions. This critical review has been tailored for a broad audience of chemists, biochemists and materials scientists; the basics of lanthanide photophysics are highlighted together with the synthetic strategies used to insert these ions into mono- and polymetallic molecular edifices. Recent advances in NIR-emitting materials, including liquid crystals, and in the control of luminescent properties in polymetallic assemblies are also presented. (210 references.).  相似文献   

6.
Luminescent Ln-Pt2 metallohairpin complexes have been developed, and their intercalative recognition with DNA has been demonstrated with linear dichroism spectroscopy. The heterotrimetallic complexes were formed in a one-step reaction, by assembly of an aminopolycarboxylate ligand, a platinum terpyridine unit, and the lanthanide salt. The metallohairpin complexes bear a neutral lanthanide moiety and two positively charged platinum-containing intercalating units. The Nd(III) analogues are luminescent in the near infrared, and this near-IR luminescence is retained upon binding to DNA. The DNA recognition was demonstrated by linear dichroism spectroscopy. The linear dichroism spectra suggested that the complexes bind perpendicular to the DNA helical axis, confirming intercalative recognition accompanied by dramatic stiffening of DNA, which suggests bis-intercalation of the complex.  相似文献   

7.
The synthesis of ligand H3 based on a disymmetrically substituted terpyridine core functionalised by a carboxylic acid in the 6-position and a bis(carboxymethyl)aminomethyl function in the 6'-position is described. The coordination behaviour of this heptadentate (4N/3O) ligand with lanthanide cations (Ln=Eu, Gd and Tb) was studied in solution showing the formation of complexes with [Ln] stoichiometry. Complexes with general formula [Ln(H2O)2] were isolated from neutral water solutions containing equimolar amounts of cations and ligands, and the complexes were characterized in the solid state (elemental analysis, IR) and in solution (mass spectrometry). The photo-physical properties of the luminescent complexes of Eu and Tb were studied in water solution by means of absorption, steady state and time-resolved emission spectroscopies. Evolution of the luminescence lifetimes of the Eu and Tb complexes in H2O and D2O reveals the presence of two water molecules coordinated in the first coordination sphere of the cations. Despite this important hydration number, the overall luminescence quantum yields of the complexes remained elevated, especially in the case of Tb (Phi=22.0 and 6.5% respectively for Tb and Eu). Upon crystallisation the Gd complex formed dimeric species in which two gadolinium atoms are each heptacoordinated by one ligand, the coordination sphere being completed by a single water molecule and a bridging carboxylate function, pointing to different behaviours in the solid and liquid states.  相似文献   

8.
Luminescent pentanuclear tetra-decker Ln(III) complexes [Eu5L4(OH)2(NO3)4(H2O)2].NO3.3H2O , [Nd5L4(OH)2(NO3)5MeOH].3MeOH.2H2O and [Eu5L4(CF3SO3)4(MeO)2(H2O)4].CF3SO3.H2O are formed from Ln(NO3)3.6H2O (Ln = Eu (1), Nd (2)) and Eu(CF3SO3)3, respectively (H2L = N,N'-bis(5-bromo-3-methoxysalicylidene)phenylene-1,2-diamine).  相似文献   

9.
10.
A new water-soluble Pybox ligand, 1, has been synthesized and found to crystallize in the monoclinic P2(1)/n space group with unit cell parameters a = 6.0936(1) ?, b = 20.5265(4) ?, c = 12.0548(2) ?, and β = 90.614(1)°. In the crystal, a water molecule is bound through hydrogen-bonding interactions to the nitrogen atoms of the oxazoline rings. This ligand was used to complex a variety of lanthanide ions, opening up new avenues for luminescence and catalysis in aqueous environment. These complexes are highly luminescent in aqueous solutions, in acetonitrile, and in the solid state. Aqueous quantum yields are high at 30.4% for Eu(III), 26.4% for Tb(III), 0.32% for Yb(III), and 0.11% for Nd(III). Er(III) did not luminesce in water, but an emission efficiency of 0.20% could be measured in D(2)O. Aqueous emission lifetimes were also determined for the visible emitting lanthanide ions and are 1.61 ms for Eu(III) and 1.78 ms for Tb(III). Comparing emission lifetimes in deuterated and nondeuterated water indicates that no water molecules are coordinated to the metal ion. Speciation studies show that three species form successively in solution and the log β values are 5.3, 9.6, and 13.8 for Eu(III) and 5.3, 9.2, and 12.7 for Tb(III) for 1:1, 2:1, and 3:1 ligand to metal ratios, respectively.  相似文献   

11.
The synthesis of ligand L(P)H(8), based on a 2,6-bispyrazolyl-pyridine scaffold functionalized by iminobismethylenephosphonate functions, is described and its pK values were determined by a combination of pH-spectrophotometric titrations and potentiometry. The interaction of L(P) with Tb(3+) was investigated in water (0.01 M TRIS/HCl pH = 7.0) by means of UV-vis and fluorescence titration experiments and evidenced the formation of at least three species with 1:1; 1:2, and 2:1 M-L ratios, the 1:1 complex appearing as particularly stable under these conditions (log K(cond) > 8). Na(4)[LnL(P)H] complexes (Ln = Eu and Tb) were prepared and characterized by elemental analysis, IR spectroscopy, and electrospray mass spectrometry. Their photophysical properties were investigated in aqueous solutions, revealing an excellent shielding of the Ln cations from the solvent environment (no water molecules in the first coordination sphere), very long luminescence lifetimes (τ(H(2)(O)) = 1.50 and 3.28 ms, respectively, for Eu and Tb) and reasonable luminescent quantum yields (?(H(2)(O)) = 2.4 and 37%, respectively, for Eu and Tb). Using fetal bovine serum as a model for biological media showed the Tb complex to remain luminescent in these conditions. The structure of the europium complex was studied by means of density functional theory (DFT) modeling, confirming the wrapping of the ligand around the cation, and the very good shielding of the coordinated Ln cation. The conditional stability constant for the formation of the Tb complex with L(P) was determined by competition experiments with EDTA and monitored by fluorescence spectroscopy (log K(TbL(P)cond) = 14.1 ± 0.3, 0.01 M TRIS/HCl, pH = 7.4) and was used to determine the thermodynamic constant (log K(TbL(P)) = 20.4 ± 0.4). A systematic comparison with ligand L(C), in which phosphonate functions are replaced by carboxylate ones, is made throughout the study, highlighting the large interest of the introduction of phosphonate moieties to obtain biologically stable luminescent lanthanide complexes.  相似文献   

12.
Detection of chelatable zinc (Zn(2+)) in biological studies has attracted much attention recently, because chelatable Zn(2+) plays important roles in many biological systems. Lanthanide complexes (Eu(3+), Tb(3+), etc.) have excellent spectroscopic properties for biological applications, such as long luminescence lifetimes of the order of milliseconds, a large Stoke's shift of >200 nm, and high water solubility. Herein, we present the design and synthesis of a novel lanthanide sensor molecule, [Eu-7], for detecting Zn(2+). This europium (Eu(3+)) complex employs a quinolyl ligand as both a chromophore and an acceptor for Zn(2+). Upon addition of Zn(2+) to a solution of [Eu-7], the luminescence of Eu(3+) is strongly enhanced, with high selectivity for Zn(2+) over other biologically relevant metal cations. One of the important advantages of [Eu-7] is that this complex can be excited with longer excitation wavelengths (around 340 nm) as compared with previously reported Zn(2+)-sensitive luminescent lamthanide sensors, whose excitation wavelength is at too high an energy level for biological applications. The usefulness of [Eu-7] for monitoring Zn(2+) changes in living HeLa cells was confirmed. This novel Zn(2+)-selective luminescent lanthanide chemosensor [Eu-7]should be an excellent lead compound for the development of a range of novel luminescent lanthanide chemosensors for biological applications.  相似文献   

13.
A mild sol-gel technique was used to incorporate terbium dibenzoyl-L-cystine complex into silica and green luminescent hybrid material was fabricated. (1)H NMR and fluorescence spectroscopy revealed the hybrids can recognize F(-) anions through hydrogen bonding formation and had no sense in binding other halide or HSO(4)(-). Furthermore, a luminescent hydrogel was successfully designed by immobilizing a terbium activated phosphor (Gd(0.1)Ce(0.9)PO(4):Tb) into molecular hydrogelator (dibenzoyl-L-cystine). The Tb(III) emission in hydrogel media gave a distinguished enhancement based on temperature increase and the function conforms to exponential equation y = 1160.6 exp(0.03x). The stability of the green luminescent gel was rather excellent and the reversibility of the gel can be recycled at least five times.  相似文献   

14.
Two isomorphic lanthanide complexes [Eu2(L)6(H2O)4] · 2H2O (1) and [Tb2(L)6(H2O)4] · 2H2O (2), (HL = 4-quinoline carboxylic acid) have been synthesized and structurally characterized by single-crystal X-ray diffraction. Both complexes are binuclear and each metal center adopts nine-coordination with nine oxygens from two H2O molecules and carboxylates of three ligands; L exhibits three different coordination modes. Luminescent properties of 1 and 2 at room temperature indicate that the triplet-state level of this ligand matches better with the lowest excited state level of Eu(III) than with Tb(III).  相似文献   

15.
Near Infrared (NIR) luminescence is useful for many applications ranging from lasers, telecommunication to biological imaging. We have a special interest for applications in biological media since NIR photons have less interference with such samples. NIR photons can penetrate relatively deeply in tissues and cause less damage to biological samples. The use of NIR luminescence also results in improved detection sensitivity due to low background emission. The lower scattering of NIR photons results in improved image resolution. NIR emitting lanthanide compounds are promising for imaging because of their unique properties such as sharp emission bands, long luminescence lifetimes and photostability. Here, we review our efforts to develop novel sensitizers for NIR emitting lanthanides. We have employed two global strategies: (1) monometallic lanthanide complexes based on derivatives of salophen, tropolonate, azulene and pyridine; and (2) polymetallic lanthanide compounds based on nanocrystals, metal-organic frameworks and dendrimers complexes.  相似文献   

16.
Generation 3 PAMAM dendrimers functionalized with 2,3-naphthalimide chromophoric groups on the end branches were synthesized, and the formation of Eu3+ polymetallic complexes was investigated. The luminescence properties of these complexes upon binding were fully characterized. On addition of Eu3+ to the dendrimer solution, lanthanide luminescence appears. The formation of a luminescent species corresponding to a dendrimer:lanthanide ratio of 1:8 was determined by luminescence batch titration and indicated by the maximum of Eu3+ emission. This indicates an overall average coordination number of 7.5 around each lanthanide metal cation. This is the first report of such characterization in the literature. Luminescence lifetimes indicate that the metal cation is well protected from nonradiative deactivation by the dendritic structure. Despite the limited efficiency of the sensitization of Eu3+, the absolute quantum yield being 0.0006, the good protection of the eight lanthanide cations bound in the dendrimer structure and the high absorptivity leads to the red emission from Eu3+ that is easily observed in solution under irradiation with 354 nm UV light.  相似文献   

17.
Xiao Y  Ye Z  Wang G  Yuan J 《Inorganic chemistry》2012,51(5):2940-2946
Reactive oxygen species (ROS) are important mediators in a variety of pathological events, but the oxidative stress owing to excessive generation of ROS is implicated in many human diseases. In this work, we designed and synthesized a novel dual-functional chelating ligand, [4'-(p-aminophenoxy)methylene-2,2':6',2'-terpyridine-6,6'-diyl]bis(methylenenitrilo)tetrakis(acetic acid) (AMTTA), that can strongly coordinate with both Eu(3+) and Tb(3+) in aqueous solutions for the recognition and time-gated luminescence detection of highly ROS (hROS), hydroxyl radical ((?)OH), and hypochlorite (ClO(-)). The complexes AMTTA-Ln(3+) (Ln = Eu and Tb) are almost nonluminescent because of the photoinduced electron transfer from the electron-rich aminophenyl group to the terpyridine-Ln(3+) moiety but can rapidly react with hROS to afford highly luminescent complexes (4'-hydroxymethyl-2,2':6',2'-terpyridine-6,6'-diyl)bis(methylenenitrilo)tetrakis(acetate)-Ln(3+) (HTTA-Ln(3+)). Interestingly, when the AMTTA-Eu(3+)/Tb(3+) mixture (AMTTA/Eu(3+)/Tb(3+) = 2/1/1) was reacted with hROS, the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540)/I(610), showed a ratiometric response toward hROS, and the dose-dependent increase of the ratio displayed a double-exponential correlation to the concentration of hROS. This unique luminescence response allowed the AMTTA-Eu(3+)/Tb(3+) mixture to be used as a ratiometric probe for the time-gated luminescence detection of hROS.  相似文献   

18.
19.
The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III), and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission (Phi tot (Eu) approximately 21.5%) with high stability (pEu approximately 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysical properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure and were found to agree with corresponding time-dependent density functional theory (TD-DFT) calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.  相似文献   

20.
Two attractive detection strategies for bioassays are reviewed in this article. Both approaches use the highly sensitive time-resolved luminescence detection of lanthanide complexes in combination with a signal amplification scheme. While enzyme-amplified lanthanide luminescence (EALL) has been an established technique for more than a decade, nanoparticles doped with luminescent lanthanide complexes have been introduced very recently. In this paper, the basic properties and major applications of both techniques are presented, and their future perspectives are discussed critically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号