首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss the Donsker-Varadhan theory of large deviations in the framework of Hamiltonian systems thermostated by a Gaussian stochastic coupling. We derive a general formula for the Donsker-Varadhan large deviation functional for dynamics which satisfy natural properties under time reversal. Next, we discuss the characterization of the stationary states as the solution of a variational principle and its relation to the minimum entropy production principle. Finally, we compute the large deviation functional of the current in the case of a harmonic chain thermostated by a Gaussian stochastic coupling.  相似文献   

2.
Physics of the Solid State - The Monte Carlo method is used to study phase transitions in disordered two-dimensional Potts models in which disorder is realized as nonmagnetic impurities. The...  相似文献   

3.
We give new and explicitly computable examples of Gibbs-non-Gibbs transitions of mean-field type, using the large deviation approach introduced in (van Enter et al. in Mosc. Math. J. 10:687–711, 2010). These examples include Brownian motion with small variance and related diffusion processes, such as the Ornstein-Uhlenbeck process, as well as birth and death processes. We show for a large class of initial measures and diffusive dynamics both short-time conservation of Gibbsianness and dynamical Gibbs-non-Gibbs transitions.  相似文献   

4.
We study the time evolution of the distance between two configurations of the site-disordered two-dimensional (2D) XY model submitted to metropolis dynamics on a square lattice. For concentrations between p = 0.6 and p = 0.9 (pc = 0.59), dynamical transitions and three temperature regimes, similar to the case of pure 2D XY model, are found.  相似文献   

5.

A particle with internal degrees of freedom is in contact with a bath of photons (necessitating a relativistic treatment). The occurrence of decoherence is established and the density matrix is found to be diagonal in momentum space. In the case of non-trivial internal degrees of freedom and selection rules there is a first order phase transition separating those degrees of freedom. Finally, because probability amplitudes become probabilities, Einstein’s proposal that more than one detector could respond to a signal is answered.

  相似文献   

6.
In this article we discuss several aspects of the stochastic dynamics of spin models. The paper has two independent parts. Firstly, we explore a few properties of the multi-point correlations and responses of generic systems evolving in equilibrium with a thermal bath. We propose a fluctuation principle that allows us to derive fluctuation–dissipation relations for many-time correlations and linear responses. We also speculate on how these features will be modified in systems evolving slowly out of equilibrium, such as finite-dimensional or dilute spin-glasses. Secondly, we present a formalism that allows one to derive a series of approximated equations that determine the dynamics of disordered spin models on random (hyper) graphs.  相似文献   

7.
We investigate a one-dimensional chain of 2N harmonic oscillators in which neighboring sites have their energies redistributed randomly. The sites −N and N are in contact with thermal reservoirs at different temperature τ and τ+. Kipnis et al. (J. Statist. Phys., 27:65–74 (1982).) proved that this model satisfies Fourier’s law and that in the hydrodynamical scaling limit, when N → ∞, the stationary state has a linear energy density profile , u ∈[−1,1]. We derive the large deviation function S(θ(u)) for the probability of finding, in the stationary state, a profile θ(u) different from . The function S(θ) has striking similarities to, but also large differences from, the corresponding one of the symmetric exclusion process. Like the latter it is nonlocal and satisfies a variational equation. Unlike the latter it is not convex and the Gaussian normal fluctuations are enhanced rather than suppressed compared to the local equilibrium state. We also briefly discuss more general models and find the features common in these two and other models whose S(θ) is known.  相似文献   

8.
We investigate the density large deviation function for a multidimensional conservation law in the vanishing viscosity limit, when the probability concentrates on weak solutions of a hyperbolic conservation law. When the mobility and diffusivity matrices are proportional, i.e. an Einstein-like relation is satisfied, the problem has been solved in Bellettini and Mariani (Bull Greek Math Soc 57:31–45, 2010). When this proportionality does not hold, we compute explicitly the large deviation function for a step-like density profile, and we show that the associated optimal current has a non trivial structure. We also derive a lower bound for the large deviation function, valid for a more general weak solution, and leave the general large deviation function upper bound as a conjecture.  相似文献   

9.
We study the asymptotics of large, simple, labeled graphs constrained by the densities of two subgraphs. It was recently conjectured that for all feasible values of the densities most such graphs have a simple structure. Here we prove this in the special case where the densities are those of edges and of k-star subgraphs, \(k\ge 2\) fixed. We prove that under such constraints graphs are “multipodal”: asymptotically in the number of vertices there is a partition of the vertices into \(M < \infty \) subsets \(V_1, V_2, \ldots , V_M\), and a set of well-defined probabilities \(g_{ij}\) of an edge between any \(v_i \in V_i\) and \(v_j \in V_j\). For \(2\le k\le 30\) we determine the phase space: the combinations of edge and k-star densities achievable asymptotically. For these models there are special points on the boundary of the phase space with nonunique asymptotic (graphon) structure; for the 2-star model we prove that the nonuniqueness extends to entropy maximizers in the interior of the phase space.  相似文献   

10.
11.
12.
We study an influence network of voters subjected to correlated disordered external perturbations, and solve the dynamical equations exactly for fully connected networks. The model has a critical phase transition between disordered unimodal and ordered bimodal distribution states, characterized by an increase in the vote-share variability of the equilibrium distributions. The fluctuations (variance and correlations) in the external perturbations are shown to reduce the impact of the external influence by increasing the critical threshold needed for the bimodal distribution of opinions to appear. The external fluctuations also have the surprising effect of driving voters towards biased opinions. Furthermore, the first and second moments of the external perturbations are shown to affect the first and second moments of the vote-share distribution. This is shown analytically in the mean field limit, and confirmed numerically for fully connected networks and other network topologies. Studying the dynamic response of complex systems to disordered external perturbations could help us understand the dynamics of a wide variety of networked systems, from social networks and financial markets to amorphous magnetic spins and population genetics.  相似文献   

13.
Let us have a finite set B (basin) with n>1 elements, which we call points, and a map M:BB. Following Vladimir Arnold, we call such pairs (B,M) monads. Here we study a class of random monads, where the values of M(⋅) are independently distributed in B as follows: for all a,bB the probability of M(a)=a is s and the probability of M(a)=b, where ab, is (1−s)/(n−1). Here s is a parameter in [0,1].  相似文献   

14.
Real-time dynamics of domain walls between the neutral and ionic phases just after photoexcitations is studied by fully solving the time-dependent Schrödinger equation for a one-dimensional extended Peierls-Hubbard (PH) model, not by relying on the adiabatic approximation. The unrestricted Hartree-Fock (HF) approximation is used for electrons, and the lattice displacements are treated classically. Three characteristic time scales are observed: rapid oscillation of ionicity owing to the local charge transfer; slow oscillation of lattice displacements; and even slower and collective motion of domain walls. Steady growth of a metastable domain is achieved after complicated competition of micro domains. The relevance to recently measured, time-resolved photoreflectance spectra in TTF-CA is discussed.  相似文献   

15.
We study the general properties of stochastic two-species models for predator-prey competition and coexistence with Lotka–Volterra type interactions defined on a d-dimensional lattice. Introducing spatial degrees of freedom and allowing for stochastic fluctuations generically invalidates the classical, deterministic mean-field picture. Already within mean-field theory, however, spatial constraints, modeling locally limited resources, lead to the emergence of a continuous active-to-absorbing state phase transition. Field-theoretic arguments, supported by Monte Carlo simulation results, indicate that this transition, which represents an extinction threshold for the predator population, is governed by the directed percolation universality class. In the active state, where predators and prey coexist, the classical center singularities with associated population cycles are replaced by either nodes or foci. In the vicinity of the stable nodes, the system is characterized by essentially stationary localized clusters of predators in a sea of prey. Near the stable foci, however, the stochastic lattice Lotka–Volterra system displays complex, correlated spatio-temporal patterns of competing activity fronts. Correspondingly, the population densities in our numerical simulations turn out to oscillate irregularly in time, with amplitudes that tend to zero in the thermodynamic limit. Yet in finite systems these oscillatory fluctuations are quite persistent, and their features are determined by the intrinsic interaction rates rather than the initial conditions. We emphasize the robustness of this scenario with respect to various model perturbations.  相似文献   

16.
We focus on the discontinuity of a neural network model with diluted and clipped synaptic connections (±l only). The exact evolution rule of the average firing rate becomes a discontinuous piece-wise nonlinear map when very simple functions of dynamical threshold are introduced into the network. Complex dynamics is observed.  相似文献   

17.
We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.  相似文献   

18.
在冷原子物理中,对无序和温度效应的研究一直是一个非常重要的课题。基于金兹堡-朗道理论,我们从解析上研究了无序和有限温度对光晶格中超冷玻色系统相变的影响。我们的计算结果显示,无序强度的增加会使得系统的Mott绝缘相区域减小;热涨落的存在将进一步破坏Mott绝缘相,同时使得系统中出现了正常流体相。这里的金兹堡-朗道理论在最低阶近似下得到的相界方程与平均场结果一致,原则上很容易将计算结果推广到高阶从而给出超越平均场的结果。  相似文献   

19.
华达银  高科 《理论物理通讯》2011,55(6):1127-1131
We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading inWatts-Strogatz (WS) small-world networks. It is found that when an individual immunity does not change or decays slowly in an immune period, the system can exhibit complex transition from an infecting stationary state to a large amplitude sustained oscillation or an absorbing state with no infection. When the immunity decays rapidly in the immune period, the transition to the global oscillation disappears and there is no oscillation. Furthermore, based on thespatio-temporal evolution patterns and the phase diagram, it is disclosed that a long immunity period takes an important role in the emergence of the global oscillation in small-world networks.  相似文献   

20.
We consider a discrete-time stochastic growth model on d-dimensional lattice. The growth model describes various interesting examples such as oriented site/bond percolation, directed polymers in random environment, time discretizations of binary contact path process and the voter model. We study the phase transition for the growth rate of the “total number of particles” in this framework. The main results are roughly as follows: If d≥3 and the system is “not too random”, then, with positive probability, the growth rate of the total number of particles is of the same order as its expectation. If on the other hand, d=1,2, or the system is “random enough”, then the growth rate is slower than its expectation. We also discuss the above phase transition for the dual processes and its connection to the structure of invariant measures for the model with proper normalization. Supported in part by JSPS Grant-in-Aid for Scientific Research, Kiban (C) 17540112.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号