首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel vertically aligned carbon nanotube based electrical cell impedance sensing biosensor (CNT-ECIS) was demonstrated for the first time as a more rapid, sensitive and specific device for the detection of cancer cells. This biosensor is based on the fast entrapment of cancer cells on vertically aligned carbon nanotube arrays and leads to mechanical and electrical interactions between CNT tips and entrapped cell membranes, changing the impedance of the biosensor. CNT-ECIS was fabricated through a photolithography process on Ni/SiO(2)/Si layers. Carbon nanotube arrays have been grown on 9 nm thick patterned Ni microelectrodes by DC-PECVD. SW48 colon cancer cells were passed over the surface of CNT covered electrodes to be specifically entrapped on elastic nanotube beams. CNT arrays act as both adhesive and conductive agents and impedance changes occurred as fast as 30 s (for whole entrapment and signaling processes). CNT-ECIS detected the cancer cells with the concentration as low as 4000 cells cm(-2) on its surface and a sensitivity of 1.7 × 10(-3)Ω cm(2). Time and cell efficiency factor (TEF and CEF) parameters were defined which describe the sensor's rapidness and resolution, respectively. TEF and CEF of CNT-ECIS were much higher than other cell based electrical biosensors which are compared in this paper.  相似文献   

2.
Dopamine (DA) plays an essential role in the central nervous, renal, hormonal and cardiovascular systems. Various modified carbon nanotubes (CNT)-based dopamine sensors have been reported, but inexpensive, highly sensitive plain CNT-based ones are seldom studied. In this work, a facile and inexpensive CNT-based DA sensor is made by rich-defect multi-walled carbon nanotubes (RD-CNT) via an ultrasound method. The defect and elemental states of the RD-CNT are systematically studied by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy, X-ray powder diffraction (XRD) and X-ray-photoelectron spectroscopy (XPS). Results show that massive holes and cracks exist in RD-CNT. The level of defects increases from the additional exposed edges. The electrochemical characterizations indicate that the electrochemical sensor has the highest sensitivity of 438.4 μA/(μM ⋅ cm2) among all carbon materials-based DA sensors while well meeting the clinically required detection range and selectivity. The DA sensor was further used to detect live healthy human serum and live PC12 cells with satisfactory results, thus holding great promise for an inexpensive but sensitive DA sensor in practical applications of clinical diagnosis and biological research.  相似文献   

3.
Telomerase is a potential cancer marker. We developed a new and robust telomerase activity assay which combines the modified telomere repeat amplification protocol (TRAP) with magnetic beads-based electrochemiluminescence (ECL) detection. The high performance of this assay is related to the determination of telomerase activity from single cell levels, and ECL intensity is linear over the range of 1–1000 HeLa cell equivalents. The proposed telomerase assay offers a highly cost- and time-effective alternative to presently available telomerase assays, which are limited by tedious and complicated post-PCR detection.  相似文献   

4.
Dissolved oxygen (DO) is an essential indicator in chemical, biological and biochemical processes and needs to be rapidly measured in many cases. In this work, a rapid, sensitive and simple electrochemical method, first derivative linear sweep voltammetry (FD-LSV), was established for the determination of DO. The peak height of FD-LSV was found to be influenced by scan rate and microelectrode surface area. An empirical formula was proposed to describe the relationship between the FD-LSV peak height and the influencing factors. Compared with other electrochemical methods for DO determination, the FD-LSV method needed lesser time and was more accurate. This method was successfully applied for the determination of the DO levels of various environmental water samples.  相似文献   

5.
A highly sensitive chemodosimeter was identified from a panel of rhodamine derivatives for rapid and visual detection of phosgene with a detection limit of 50 nM triphosgene. Visual detection of gaseous phosgene with chemodosimeter absorbed paper strips was demonstrated.  相似文献   

6.
Journal of Solid State Electrochemistry - In this paper, NiSe2 materials were synthesized on carbon fiber felts (CFF) using a convenient one-step microwave approach. Self-supporting NiSe2/CFF is a...  相似文献   

7.
A spectrophotometric method utilizing the dye indigo carmine has been applied to the analysis of dissolved oxygen in water samples. Oxygen concentration has been determined by the decrease in absorbance at 410 mμ of reduced indigo carmine solutions oxidized by dissolved oxygen. A simple modification of the sample compartment of a Bausch and Lomb Spectronic 20 or 340 spectrophotometer allows rapid and accurate measurements to be made within 3 min. Dissolved oxygen in the ranges of 0 to 10% and 0 to 100% saturation can be analyzed without many of the interferences inherent in the standard Winkler method.  相似文献   

8.
TiO2 nanocrystals had been modified on the surface of the glassy carbon electrode (GCE) with the help of Nafion. The electrochemiluminescence (ECL) behavior of the TiO2/Nafion GCE in aqueous solution was investigated. A possible mechanism about the ECL of TiO2 had also been proposed. The ECL intensity was linear with the dissolved oxygen concentration in the range of 0.30–10.00 mg/L with a detection limit of 0.12 mg/L. The developed method can be applied to detect the dissolved oxygen concentration or biochemical oxygen demand (BOD).  相似文献   

9.
A novel poly-glutamic acid (PGA) film modified carbon paste electrode (CPE) incorporating carbon nanotubes (CNTs) was first prepared for the determination of l-tryptophan (l-Trp). Scanning electron microscopy and Fourier transform infrared spectroscopy were applied for characterization of the surface morphology of the modified electrodes and cyclic voltammetry was used to investigate the electrochemical properties of the proposed electrode towards the oxidation of l-Trp. Optimization of the experimental parameters was performed with regard to pH, ratio of CNTs, concentration of glutamic acid, electro-polymerization cycles, accumulation time and concentration of sodium dodecylbenzene sulfonate. The linearity between the oxidation peak current and the l-Trp concentration was obtained in the range of 5.0×10(-8) to 1.0×10(-4)M with a detection limit of 1.0×10(-8)M (S/N=3) and the sensitivity was calculated to be 1143.79μA?mM(-1)?cm(-2). In addition, the PGA modified CPE incorporating CNTs displayed high selectivity, good stability and reproducibility, making it suitable for the routine analysis of l-Trp in clinical use.  相似文献   

10.
11.
A nickel nanoparticle (NiNP)/carbon nanotube (CNT)-modified carbon fiber microelectrode (NiNPs/CNTs/CFME) was fabricated using a two-step electroless plating/chemical vapor deposition method. The morphology of the NiNPs/CNTs composite structure was characterized by scanning electron microscopy, and its elemental composition was characterized by an energy dispersive spectrometer. The electrochemical behavior of the NiNPs/CNTs/CFME in aqueous alkaline solutions of insulin was investigated by cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy in sequence. CV curves show that the NiNPs/CNTs/CFME displays a high oxidation peak current, a fast electron transfer rate, and good electrocatalytic activity towards insulin, compared to a bare CFME and a pure NiNP-modified CFME. In the chronoamperometry tests, the NiNPs/CNTs/CFME demonstrates an excellent analytical performance in detecting low concentrations of insulin, including good sensitivity (1.11 nA μM?1) and a low detection limit (270 nM). Moreover, this microelectrode exhibits great reproducibility in successive potential cycling and satisfactory long-term stability after storage at room temperature for approximately 8 weeks.  相似文献   

12.
Stopped-flow hydrodynamic modulation voltammetry is applied to membrane electrodes to minimize some of the problems that characterize steady-state dissolved oxygen probes. Mass-transport properties, sensitivity, precision, and linearity of response are reported. The low stopped-flow background current allows a limit of detection for dissolved oxygen near 36 μg l-1. The relative standard deviation at the mg l-1 level is 3% Glassy carbon electrodes are used, replacing the commonly used metal cathodes, to minimize passivation effects. The method is sensitive, reproducible, and simple.  相似文献   

13.
14.
A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β2-agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β2-agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL−1, with the detection limits of 0.20 and 0.040 ng mL−1 (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β2-agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety.  相似文献   

15.
Thanzami K  Roy I 《Electrophoresis》2008,29(7):1585-1588
A fast and specific method for the detection of collagenase by electrophoresis is described. The method avoids inclusion of the substrate in the resolving gel and can detect nanogram levels of the enzyme.  相似文献   

16.
Sulfonamides in environmental water, food, and feed are a major concern for both aquatic ecosystems and public health, because they may lead to the health risk of drug resistance. Thus, numerous sensitive detection and rapid removal methodologies have been established. This review summarizes the sample preparation techniques and instrumental methods used for sensitive detection of sulfonamides. Additionally, adsorption and photocatalysis for the rapid removal of sulfonamides are also discussed. This review provides a comprehensive perspective on future sulfonamide analyses that have good performance, and on the basic methods for the rapid removal of sulfonamides.  相似文献   

17.
Surface-enhanced Raman spectroscopy (SERS) has been widely applied for rapid and sensitive detection of various chemical and biological targets. Here, we incorporated a filter syringe system into the SERS method to detect the fungicide ferbam in water. Silver nanoparticles (Ag NPs) were aggregated by sodium chloride (NaCl) to form nanoclusters that could be trapped in the pores of the filter membrane to from the SERS-active membrane. Then samples were filtered through the membrane. After capturing the target, the membrane was taken out and air dried before measuring by a Raman instrument. After optimisation of various parameters, the developed filter SERS method was able to detect the fungicide ferbam as low as 2.5 μg/L and had a good quantitative capability. The developed method was successfully applied in three water samples, including double-distilled water, tap water, and pond water. The test can be carried out on site using a portable Raman instrument. This study shows that the filter-based SERS method improves the detection capability in water samples, including the sensitivity and portability, and could be applied in the detection of various toxins in real-world water samples.  相似文献   

18.
Electrochemical detection of p-nitrophenol (P-NP) using a highly sensitive and selective platform based on single-walled carbon nanotube/pyrenecyclodextrin (SWCNT/PyCD) nanohybrids is described for the first time. The electrochemical performance of the SWCNT/PyCD nanohybrid electrode was fully compared with bare glassy carbon, single-SWCNT, single-PyCD, and SWCNT/CD (without pyrene rings) electrodes. Besides the techniques of cyclic voltammetry and chronoamperometric transients, differential pulse voltammetry (DPV) has been used for the detection of P-NP without any interference from o-nitrophenol (O-NP) at the potentials of -0.80 and -0.67 V, respectively. The SWCNT/PyCD nanohybrid electrode is highly sensitive, and it shows an ultrahigh sensitivity of 18.7 μA/μM toward P-NP in contrast to the values reported previously. The detection limit (S/N = 3) of the SWCNT/PyCD nanohybrid electrode toward P-NP is 0.00086 μM (0.12 ppb), which is well below the allowed limit in drinking water, 0.43 μM, given by the U.S. Environmental Protection Agency (EPA). The analytical performance of the SWCNT/PyCD nanohybrid electrode toward P-NP is superior to the existing electrodes.  相似文献   

19.
Novel optical sensing films for oxygen based on highly luminescent iridium (III) and ruthenium (II) complexes have been developed. These demonstrate excellent long-term photostability (several months) when incorporated into polystyrene membranes. The influence of different plasticizers on the specific luminescence quantum yield, the Stern-Volmer constant, the reversibility and the response time were evaluated. Additionally the sensing films can be sterilized by chemical cleaning and gamma-ray irradiation.  相似文献   

20.
Putrescine (1,4-diaminobutane) a biologically active diamine has been found to be a valuable analyte for several clinical and analytical purposes. The present work deals with diamine oxidase immobilized on iron oxide nanoparticles for quantifying the amount of putrescine produced, by the decarboxylation of ornithine, which is converted into hydrogen peroxide by the enzyme diamine oxidase (DAO). This reaction can be quantified using electrochemical techniques, which forms the basis of this work. Iron oxide (Fe(3)O(4)) nanoparticles, synthesized using thermal co-precipitation, were chosen for immobilization of DAO due to its simple preparation procedure, high surface area and cost-effectiveness. The size of the particles was in the range of 25-35 nm and the enzyme was linked covalently by carbodiimide activation and confirmed using FT-IR. For detecting the hydrogen peroxide released in the reaction, a glassy carbon-working electrode coated with enzyme linked iron oxide nanoparticles was poised at +0.4 V versus an Ag/AgCl reference electrode and a platinum wire was used as the counter electrode. A step-wise increase in current was observed and linearity was obtained in the range of 2-8 nM, with 0.65 nM as the minimum detection limit and the response time was found to be 0.3 seconds. Ascorbic acid, a common interfering molecule in biological samples, did not interfere with the measurements indicating the high degree of specificity of the diamine oxidase-based nano-interfaced biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号