首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subgraphs and the Laplacian spectrum of a graph   总被引:1,自引:0,他引:1  
Let G be a graph and H a subgraph of G. In this paper, a set of pairwise independent subgraphs that are all isomorphic copies of H is called an H-matching. Denoting by ν(H,G) the cardinality of a maximum H-matching in G, we investigate some relations between ν(H,G) and the Laplacian spectrum of G.  相似文献   

2.
We investigate the expected value of various graph parameters associated with the minimum rank of a graph, including minimum rank/maximum nullity and related Colin de Verdière-type parameters. Let G(v,p) denote the usual Erd?s-Rényi random graph on v vertices with edge probability p. We obtain bounds for the expected value of the random variables mr(G(v,p)), M(G(v,p)), ν(G(v,p)) and ξ(G(v,p)), which yield bounds on the average values of these parameters over all labeled graphs of order v.  相似文献   

3.
A p-vertex graph is called pancyclic if it contains cycles of every length l, 3 ≤ lp. In this paper we prove the following conjecture of Bondy and Chvátal: If a graph G has vertex degree sequence d1d2 ≤ … ≤ dν, and if dk ≤ k < p2 implies dν?kp ? k, then G is pancyclic or bipartite.  相似文献   

4.
For a graph G let μ(G) denote the cyclomatic number and let ν(G) denote the maximum number of edge-disjoint cycles of G.We prove that for every k≥0 there is a finite set P(k) such that every 2-connected graph G for which μ(G)−ν(G)=k arises by applying a simple extension rule to a graph in P(k). Furthermore, we determine P(k) for k≤2 exactly.  相似文献   

5.
In this paper, some relations between L p -spaces on locally compact groups are found. Applying these results proves that for a locally compact group G, the convolution Banach algebras L p (G) ∩ L 1(G) (1 < p), and A p (G) ∩ L 1(G) (1 < p < ) are amenable if and only if G is discrete and amenable.  相似文献   

6.
If by s k is denoted the number of independent sets of cardinality k in a graph G, then ${I(G;x)=s_{0}+s_{1}x+\cdots+s_{\alpha}x^{\alpha}}$ is the independence polynomial of G (Gutman and Harary in Utilitas Mathematica 24:97–106, 1983), where αα(G) is the size of a maximum independent set. The inequality |I (G; ?1)| ≤ 2 ν(G), where ν(G) is the cyclomatic number of G, is due to (Engström in Eur. J. Comb. 30:429–438, 2009) and (Levit and Mandrescu in Discret. Math. 311:1204–1206, 2011). For ν(G) ≤ 1 it means that ${I(G;-1)\in\{-2,-1,0,1,2\}.}$ In this paper we prove that if G is a unicyclic well-covered graph different from C 3, then ${I(G;-1)\in\{-1,0,1\},}$ while if G is a connected well-covered graph of girth ≥ 6, non-isomorphic to C 7 or K 2 (e.g., every well-covered tree ≠ K 2), then I (G; ?1) = 0. Further, we demonstrate that the bounds {?2 ν(G), 2 ν(G)} are sharp for I (G; ?1), and investigate other values of I (G; ?1) belonging to the interval [?2 ν(G), 2 ν(G)].  相似文献   

7.
Let G=(V,E)be a graph andφbe a total coloring of G by using the color set{1,2,...,k}.Let f(v)denote the sum of the color of the vertex v and the colors of all incident edges of v.We say thatφis neighbor sum distinguishing if for each edge uv∈E(G),f(u)=f(v).The smallest number k is called the neighbor sum distinguishing total chromatic number,denoted byχ′′nsd(G).Pil′sniak and Wo′zniak conjectured that for any graph G with at least two vertices,χ′′nsd(G)(G)+3.In this paper,by using the famous Combinatorial Nullstellensatz,we show thatχ′′nsd(G)2(G)+col(G)-1,where col(G)is the coloring number of G.Moreover,we prove this assertion in its list version.  相似文献   

8.
Let G be a maximal planar graph with p vertices, and let Ck(G) denote the number of cycles of length k in G. We first present tight bounds for C3(G) and C4(G) in terms of p. We then give bounds for Ck(G) when 5 ≤ k ≤ p, and consider in particular bounds for Cp(G), in terms of p. Some conjectures and unsolved problems are stated.  相似文献   

9.
A subgroup of index p k of a finite p-group G is called a k-maximal subgroup of G. Denote by d(G) the number of elements in a minimal generator-system of G and by δ k (G) the number of k-maximal subgroups which do not contain the Frattini subgroup of G. In this paper, the authors classify the finite p-groups with δd(G)(G) ≤ p2 and δd(G)?1(G) = 0, respectively.  相似文献   

10.
G = 〈V(G), E(G)〉 denotes a directed graph without loops and multiple arrows. K(G) denotes the set of all Hamiltonian circuits of G. Put H(n, r) = max{|E(G)|, |V(G)| = n, 1 ≤ |K(G)| ≤ r}. Theorem: H(n, 1) = (n22) + (n2) ?1. Further, H(n, 2),…, H(n, 5) are given.  相似文献   

11.
Let G be a finite group and π e (G) be the set of element orders of G. Let k ∈ π e (G) and m k be the number of elements of order k in G. Set nse(G):= {m k : k ∈ π e (G)}. In fact nse(G) is the set of sizes of elements with the same order in G. In this paper, by nse(G) and order, we give a new characterization of finite projective special linear groups L 2(p) over a field with p elements, where p is prime. We prove the following theorem: If G is a group such that |G| = |L 2(p)| and nse(G) consists of 1, p 2 ? 1, p(p + ?)/2 and some numbers divisible by 2p, where p is a prime greater than 3 with p ≡ 1 modulo 4, then G ? L 2(p).  相似文献   

12.
With each nonempty graph G one can associate a graph L(G), called the line graph of G, with the property that there exists a one-to-one correspondence between E(G) and V(L(G)) such that two vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent. For integers m ≥ 2, the mth iterated line graph Lm(G) of G is defined to be L(Lm-1(G)). A graph G of order p ≥ 3 is n-Hamiltonian, 0 ≤ np ? 3, if the removal of any k vertices, 0 ≤ kn, results in a Hamiltonian graph. It is shown that if G is a connected graph with δ(G) ≥ 3, where δ(G) denotes the minimum degree of G, then L2(G) is (δ(G) ? 3)-Hamiltonian. Furthermore, if G is 2-connected and δ(G) ≥ 4, then L2(G) is (2δ(G) ? 4)-Hamiltonian. For a connected graph G which is neither a path, a cycle, nor the graph K(1, 3) and for any positive integer n, the existence of an integer k such that Lm(G) is n-Hamiltonian for every mk is exhibited. Then, for the special case n = 1, bounds on (and, in some cases, the exact value of) the smallest such integer k are determined for various classes of graphs.  相似文献   

13.
The detour order τ(G) of a graph G is the order of a longest path of G. A partition (A, B) of V is called an (a, b)-partition of G if τ(G[A]) ≤ a and τ(G[B]) ≤ b. The Path Partition Conjecture is the following:For any graph G, with detour order τ(G) = a + b, there exists an (a, b)-partition of G.We introduce and examine a conjecture which is possibly stronger: If M is a maximum Pn+1-free set of vertices of G, with n < τ(G), then τ(GM) ≤ τ(G)− n.  相似文献   

14.
For any graph G, let i(G) and μ;(G) denote the smallest number of vertices in a maximal independent set and maximal clique, respectively. For positive integers m and n, the lower Ramsey number s(m, n) is the largest integer p so that every graph of order p has i(G) ≤ m or μ;(G) ≤ n. In this paper we give several new lower bounds for s (m, n) as well as determine precisely the values s(1, n).  相似文献   

15.
A total edge irregular k-labelling ν of a graph G is a labelling of the vertices and edges of G with labels from the set {1,…,k} in such a way that for any two different edges e and f their weights φ(f) and φ(e) are distinct. Here, the weight of an edge g=uv is φ(g)=ν(g)+ν(u)+ν(v), i. e. the sum of the label of g and the labels of vertices u and v. The minimum k for which the graph G has an edge irregular total k-labelling is called the total edge irregularity strength of G.We have determined the exact value of the total edge irregularity strength of complete graphs and complete bipartite graphs.  相似文献   

16.
A graph G is k‐choosable if its vertices can be colored from any lists L(ν) of colors with |L(ν)| ≥ k for all ν ∈ V(G). A graph G is said to be (k,?)‐choosable if its vertices can be colored from any lists L(ν) with |L(ν)| ≥k, for all ν∈ V(G), and with . For each 3 ≤ k ≤ ?, we construct a graph G that is (k,?)‐choosable but not (k,? + 1)‐choosable. On the other hand, it is proven that each (k,2k ? 1)‐choosable graph G is O(k · ln k · 24k)‐choosable. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

17.
Let G be a finite non-abelian p-group, where p is a prime. Let Autc(G) and Autz(G) respectively denote the group of all class preserving and central automorphisms of G. We give a necessary and sufficient condition for G such that Autc(G) = Autz(G) and classify all finite non-abelian p-groups G with elementary abelian or cyclic center such that Autc(G) = Autz(G). We also characterize all finite p-groups G of order ≤ p 7 such that Autz(G) = Autz(G) and complete the classification of all finite p-groups of order ≤ p 5 for which there exist non-inner class preserving automorphisms.  相似文献   

18.
Let G be a graph with n vertices and ν(G) be the matching number of G. Let η(G) denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G)=n-2ν(G). Tan and Liu [X. Tan, B. Liu, On the nullity of unicyclic graphs, Linear Alg. Appl. 408 (2005) 212-220] proved that the nullity set of all unicyclic graphs with n vertices is {0,1,…,n-4} and characterized the unicyclic graphs with η(G)=n-4. In this paper, we characterize the unicyclic graphs with η(G)=n-5, and we prove that if G is a unicyclic graph, then η(G) equals , or n-2ν(G)+2. We also give a characterization of these three types of graphs. Furthermore, we determine the unicyclic graphs G with η(G)=0, which answers affirmatively an open problem by Tan and Liu.  相似文献   

19.
The problem of vertex labeling with a condition at distance two in a graph, is a variation of Hale’s channel assignment problem, which was first explored by Griggs and Yeh. For positive integerpq, the λ p,q -number of graph G, denoted λ(G;p, q), is the smallest span among all integer labellings ofV(G) such that vertices at distance two receive labels which differ by at leastq and adjacent vertices receive labels which differ by at leastp. Van den Heuvel and McGuinness have proved that λ(G;p, q) ≤ (4q-2) Δ+10p+38q-24 for any planar graphG with maximum degree Δ. In this paper, we studied the upper bound of λ p ,q-number of some planar graphs. It is proved that λ(G;p, q) ≤ (2q?1)Δ + 2(2p?1) ifG is an outerplanar graph and λ(G;p,q) ≤ (2q?1) Δ + 6p - 4q - 1 if G is a Halin graph.  相似文献   

20.
Let G be a locally compact group, and let R(G) denote the ring of subsets of G generated by the left cosets of open subsets of G. The Cohen-Host idempotent theorem asserts that a set lies in R(G) if and only if its indicator function is a coefficient function of a unitary representation of G on some Hilbert space. We prove related results for representations of G on certain Banach spaces. We apply our Cohen-Host type theorems to the study of the Figà-Talamanca-Herz algebras Ap(G) with p∈(1,∞). For arbitrary G, we characterize those closed ideals of Ap(G) that have an approximate identity bounded by 1 in terms of their hulls. Furthermore, we characterize those G such that Ap(G) is 1-amenable for some—and, equivalently, for all—p∈(1,∞): these are precisely the abelian groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号