首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The direct electrocatalytic reduction of hydrogen peroxide in alkaline medium at a carbon ionic liquid electrode modified with copper oxide nanoparticles was investigated. The electrode was prepared by mixing graphite particles, ionic liquid (n-octylpyridium hexafluorophosphate) and copper oxide nanoparticles. Unlike the film-modified electrode, the fabrication of this electrode is simple and highly reproducible. The combination of the good conductivity of the ionic liquid and the high catalytic activity of the nanoparticles resulted in an electrode with attractive properties for the determination of hydrogen peroxide. The concentration of NaOH and the loading of copper oxide nanoparticles were optimized. The linear range for the determination of hydrogen peroxide is from 1.0 μM to 2.5 mM, the detection limit is 0.5 μM. High stability, sensitivity, selectivity and reproducibility, fast response, the ease of preparation, and surface renewal made the electrode well suitable for the determination of hydrogen peroxide in real samples.  相似文献   

2.
Using porous cuprous oxide (Cu2O) microcubes, a simple non-enzymatic amperometric sensor for the detection of H2O2 and glucose has been fabricated. Cyclic voltammetry (CV) revealed that porous Cu2O microcubes exhibited a direct electrocatalytic activity for the reduction of H2O2 in phosphate buffer solution and the oxidation of glucose in an alkaline medium. The non-enzymatic amperometric sensor used in the detection of H2O2 with detection limit of 1.5 × 10?6 M over wide linear detection ranges up to 1.5 mM and with a high sensitivity of 50.6 μA/mM. This non-enzymatic voltammetric sensor was further utilized in detection of glucose with a detection limit of 8.0 × 10?7 M, a linear detection range up to 500 μM and with a sensitivity of ?70.8 μA/mM.  相似文献   

3.
We are reviewing the state of electrochemical sensing of H2O2 based on the use of metal nanoparticles. The article is divided into subsections on sensors based on nanoparticles made from Ag, Pt, Pd, Cu, bimetallic nanoparticles and other metals. Some sensors display high sensitivity, fast response, and good stability. The review is subdivided into sections on sensors based on heme proteins and on nonenzymatic sensors. We also discussed the challenges of nanoscaled sensors and their future aspects.
Figure
Sensing mechanism of (A) mediator-based enzyme biosensor, (B) mediator-less enzyme biosensor and (C) nonenzymatic sensors with metal nanoparticles for the electrocatalytic reduction toward H2O2  相似文献   

4.
Jing Sui  Wei Li 《Soft Materials》2018,16(3):201-208
Pt nanoparticles (PtNPs)/polypyrole (PPy) composites were successfully prepared through a facile one-pot interfacial polymerization of pyrrole by using H2PtCl6 as the oxidant for the first time. The as-prepared PPy was granular particles with particle size within a few hundred nanometers, on which PtNPs (1.7–3.5) nm were homogeneously dispersed. The PtNPs/PPy composites displayed excellent electrocatalytic activity toward redox of H2O2. The non-enzyme sensor constructed with PtNPs/PPy composites displayed good sensing ability toward H2O2 at ?0.1 V with a significantly high sensitivity of 6056 μAmM?1cm?2 and a low detection limit of 1.8 μM (S/N = 3).  相似文献   

5.
The three-dimensional fibril-like carbon fiber mat electrode (CFME) decorated with Au nanoparticles (AuNPs) was employed to construct Hg(II) sensing platform for the first time. The highly porous feature of CFME combining the high affinity of AuNPs for mercury endowed the sensing platform with high sensitivity and good reproducibility. Under optimal conditions, the prepared AuNPs/CFME was capable of sensing Hg(II) with a detection limit of 0.1 μg L 1 (S/N = 3) using differential pulse anodic stripping voltammetry (DPASV). Finally, the AuNPs/CFME was successfully demonstrated for the determination of Hg(II) in real water samples with satisfactory results.  相似文献   

6.
Novel MnOOH nanorod arrays directly growing on a flexible carbon cloth substrate (MnOOH/CC) is first synthesized through a facile hydrothermal technique and utilized as an electrocatalyst for non-enzymatic detection of hydrogen peroxide. The as-prepared MnOOH nanorods are uniformly distributed on the carbon cloth with a 3D porous network structure, which provides a high specific surface area and numerous electroactive sites. The electrode based on the carbon cloth-supported MnOOH nanorod arrays exhibits a higher sensitivity (692.42 μA mM−1 cm−2) and a wider linear range (20 μm–9.67 mM) with a detection limit of 3.2 μM (S/N = 3) compared with the electrode based on the rigid graphite substrate supported the random distributed MnOOH nanorods. Further, the MnOOH/CC possesses an outstanding flexibility and can conveniently be assembled into the required shape for a specific use, thus the arc-shaped MnOOH/CC electrodes are fabricated whose electrocatalytic activity toward the hydrogen peroxide reduction remains nearly unchanged in comparison with the unbent state. Due to its excellent sensitivity, reproducibility, anti-interference and stability, the electrode based on the carbon cloth-supported MnOOH nanorod arrays is believed to be promising for applications in high efficiency flexible hydrogen peroxide sensing.  相似文献   

7.
The present paper introduces a novel method to functionalize nanofiber surfaces with carbon or silica nanoparticles by dip coating. This novel approach holds promise of significant benefits because dip coating of electrospun and carbonized nanofiber mats in poly(furfuryl alcohol) (abbreviated as PFA) is used to increase surface roughness by means of PFA-derived carbon nanoparticles produced at the fiber surface. Also, dip coating in tetraethylorthosilicate (abbreviated as TEOS) is shown to be an effective method for decorating carbon nanofibers with TEOS-derived silica nanoparticles at their surface. Furthermore, dip coating is an inexpensive technique which is easier to implement than the existing methods of nanofiber decoration with silica nanoparticles and results in a higher loading capacity. Carbon nanofiber mats with PFA- or TEOS-decorated surfaces hold promise of becoming the effective electrodes in fuel cells, Li-ion batteries and storage devices.  相似文献   

8.
Microchimica Acta - A fluorometric method is presented for sensitive deternination of microRNA. It is making use of carbon dots (C-dots) loaded with a DNA probe as fluorophore and MnO2 nanosheets...  相似文献   

9.
A novel non-enzymatic electrochemical sensor based on a nanoporous gold electrode modified with platinum nanoparticles was constructed for the determination of hydrogen peroxide (H2O2). Platinum nanoparticles exhibit good electrocatalytic activity towards hydrogen peroxide. The nanoporous gold (NPG) increases the effective surface area and has the capacity to promote electron-transfer reactions. With electrodeposition of Pt nanoparticles (NPs) on the surface of the nanoporous gold, the modified Au electrode afforded a fast, sensitive and selective electrochemical method for the determination of H2O2. The linear range for the detection of H2O2 was from 1.0 × 10?7 M to 2.0 × 10?5 M while the calculated limit of detection was 7.2 × 10?8 M on the basis of the 3σ/slope (σ represents the standard deviation of the blank samples). These findings could lead to the widespread use of electrochemical sensors to detect H2O2.  相似文献   

10.
We report on a simple and rapid method for the preparation of a disposable palladium nanoparticle-modified graphite pencil electrode (PdNP-GPE) for sensing hydrogen peroxide (H2O2). The bare and PdNP-modified GPEs were characterized by cyclic voltammetry and SEM. The two electrodes displayed distinct electrocatalytic activities in response to the electrochemical reduction of H2O2. The amperometric detection limits were 45 nM and 0.58 mM, respectively, for the PdNP-GPE and bare-GPE, at an S/N of 3. The electrodes can be prepared simply and at low cost, and represent a promising tool for sensing H2O2.
Figure
?  相似文献   

11.
Chen W  Cai S  Ren QQ  Wen W  Zhao YD 《The Analyst》2012,137(1):49-58
Due to the significance of hydrogen peroxide (H(2)O(2)) in biological systems and its practical applications, the development of efficient electrochemical H(2)O(2) sensors holds a special attraction for researchers. Various materials such as Prussian blue (PB), heme proteins, carbon nanotubes (CNTs) and transition metals have been applied to the construction of H(2)O(2) sensors. In this article, the electrocatalytic H(2)O(2) determinations are mainly focused on because they can provide a superior sensing performance over non-electrocatalytic ones. The synergetic effect between nanotechnology and electrochemical H(2)O(2) determination is also highlighted in various aspects. In addition, some recent progress for in vivo H(2)O(2) measurements is also presented. Finally, the future prospects for more efficient H(2)O(2) sensing are discussed.  相似文献   

12.
We report on a novel nonenzymatic sensor platform for the determination of hydrogen peroxide and glucose. It is based on a carbon paste electrode that was modified with Co0.4Fe0.6LaO3 nanoparticles synthesized by the sol–gel method. The structure and morphology of Co0.4Fe0.6LaO3 nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical performance of this sensor was evaluated by cyclic voltammetry and amperometry, and the results demonstrated that it exhibits strong electrocatalytical activity towards the oxidation of H2O2 and glucose in an alkaline medium. The sensor has a limit of detection as low as 2.0 nM of H2O2 and a linear range that extends from 0.01 to 800 μM. The response to glucose is characterized by two analytical ranges of different slope, viz. from 0.05 to 5 μM and from 5 to 500 μM, with a 10 nM limit of detection. The glucose sensor has a fast response and good long term stability.
Figure
CVs recorded on bare CPE (a) and CFL/CPE (c) with 0.3 mM H2O2, CFLs/CPE (b) without H2O2 in 0.1 M NaOH. Scan rate: 100 mV/s. Compared with bare CPE (curve a) with H2O2, a steep increase of oxidation current on the CFLs/CPE with H2O2 (curve c) is observed at around 0.45 V. The above experimental result demonstrated that Co0.4Fe0.6LaO3 nanoparticles displayed great electro-catalytic activity to H2O2.  相似文献   

13.
Liu  Yang  Shi  Liang  Gong  Jin  Fang  Yu-Ting  Bao  Ning  Gu  Hai-Ying  Zeng  Jiang 《Mikrochimica acta》2015,182(15):2461-2468

Hemoglobin (Hb) has been demonstrated to endow electrochemical sensors with pH-switchable response because of the presence of carboxyl and amino groups. Hb was deposited in a chitosan matrix on a glassy carbon electrode (GCE) that was previously coated with clustered gold nanoparticles (Au-NPs) by electrodeposition. The switching behavior is active (“on”) to the negatively charged probe [Fe(CN)6 3−] at pH 4.0, but inactive (“off”) to the probe at pH 8.0. This switch is fully reversible by simply changing the pH value of the solution and can be applied for pH-controlled reversible electrochemical reduction of H2O2 catalyzed by Hb. The modified electrode was tested for its response to the different electroactive probes. The response to these species strongly depends on pH which was cycled between 4 and 8. The effect is also attributed to the presence of pH dependent charges on the surface of the electrode which resulted in either electrostatic attraction or repulsion of the electroactive probes. The presence of Hb, in turn, enhances the pH-controllable response, and the electrodeposited Au-NPs improve the capability of switching. This study reveals the potential of protein based pH-switchable materials and also provides a simple and effective strategy for fabrication of switchable chemical sensors as exemplified in a pH-controllable electrode for hydrogen peroxide.

A pH “on-off” switchable nanobiosensor was fabricated by casting a chitosan-hemoglobin biocomposite onto nano-gold electrode. This composite film exhibits not only excellent pH-responsive on (pH 4.0)-off (pH 8.0) behavior but also excellent pH-tunable on-off bioelectrocatalysis of H2O2.

  相似文献   

14.
15.
Kafi  A. K. M.  Wali  Qamar  Jose  Rajan  Biswas  Tapan Kumar  Yusoff  Mashitah M. 《Mikrochimica acta》2017,184(11):4443-4450
Microchimica Acta - The authors describe a glassy carbon electrode (GCE) modified with a multiporous nanofibers prepared from SnO2, polyaniline and hemoglobin, and its application to the...  相似文献   

16.
Narang J  Chauhan N  Pundir CS 《The Analyst》2011,136(21):4460-4466
We describe the construction of a polyaniline (PANI), multiwalled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) modified Au electrode for determination of hydrogen peroxide without using peroxidase (HRP). The AuNPs/MWCNT/PANI composite film deposited on Au electrode was characterized by Scanning Electron Microscopy (SEM) and electrochemical methods. Cyclic voltammetric (CV) studies of the electrode at different stages of construction demonstrated that the modified electrode had enhanced electrochemical oxidation of H(2)O(2), which offers a number of attractive features to develop amperometric sensors based on split of H(2)O(2). The amperometric response to H(2)O(2) showed a linear relationship in the range from 3.0 μM to 600.0 μM with a detection limit of 0.3 μM (S/N = 3) and with high sensitivity of 3.3 mA μM(-1). The sensor gave accurate and satisfactory results, when employed for determination of H(2)O(2) in milk and urine.  相似文献   

17.
18.
In this paper, we describe an amperometric-type enzymeless glucose sensing system based on a nanoporous platinum (Pt) electrode embedded in a microfluidic chip. This microchip system is comprised of a microfluidic transport channel network and a miniaturized electrochemical cell for nonenzymatic glucose sensing. Sample and buffer solutions were transferred to the cell by programmed electroosmotic flow (EOF). A nanoporous Pt electrode with the roughness factor of 200.6 was utilized to determine glucose concentrations in phosphate buffered saline (PBS) by the direct oxidation of glucose, without any separation process. The sensitivity of the developed system is 1.65 microA cm-2 mM-1 in the glucose concentration range from 1-10 mM in PBS.  相似文献   

19.
Yang  Yang  Fu  Renzhong  Yuan  Jianjun  Wu  Shiyuan  Zhang  Jialiang  Wang  Haiying 《Mikrochimica acta》2015,182(13):2241-2249

We are presenting a sensor for hydrogen peroxide (H2O2) that is based on the use of a heterostructure composed of Pt nanoparticles (NPs) and carbon nanofibers (CNFs). High-density Pt NPs were homogeneously loaded onto a three-dimensional nanostructured CNF matrix and then deposited in a glassy carbon electrode (GCE). The resulting sensor synergizes the advantages of the conducting CNFs and the nanoparticle catalyst. The porous structure of the CNFs also favor the high-density immobilization of the NPs and the diffusion of water-soluble molecules, and thus assists the rapid catalytic oxidation of H2O2. If operated at a working voltage of −0.2 V (vs. Ag/AgCl), the modified GCE exhibits a linear response to H2O2 in the 5 μM to 15 mM concentration range (total analytical range: 5 μM to 100 mM), with a detection limit of 1.7 μM (at a signal-to-noise ratio of 3). The modified GCE is not interfered by species such as uric acid and glucose. Its good stability, high selectivity and good reproducibility make this electrode a valuable tool for inexpensive amperometric sensing of H2O2.

The Pt NPs/CNF heterostructure-based H2O2 sensor synergizes the advantages of both the conducting carbon nanofibers and the nanoparticle catalyst. The 3D structure of the nanofibers favor high density immobilization of the nanoparticles and penetration by water-soluble molecules, which assists the catalyic oxidation of H2O2. The sensor shows outstanding performance in terms of detection range, detection limit, response time, stability and selectivity.

  相似文献   

20.
The well dispersed and size-controlled Ag nanoparticles decorated multi-walled carbon nanotubes (MWCNT) were synthesized by a simple chemical plating method. The oxidized MWCNT surfaces could get a more controlled and specific nucleation of Ag nanoparticles. The as-prepared nanocomposites were characterized by transmission electron microscopy, X-ray diffraction and cyclic voltammetry. Randles-Sevcik plot suggested that the reaction of the nanocomposites in alkaline solution was a diffusion-controlled process. The electrocatalytic reduction property toward H2O2 was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号