首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop a categorical scheme of interpretation of quantum event structures from the viewpoint of Grothendieck topoi. The construction is based on the existence of an adjunctive correspondence between Boolean presheaves of event algebras and Quantum event algebras, which we construct explicitly. We show that the established adjunction can be transformed to a categorical equivalence if the base category of Boolean event algebras, defining variation, is endowed with a suitable Grothendieck topology of covering systems. The scheme leads to a sheaf theoretical representation of Quantum structure in terms of variation taking place over epimorphic families of Boolean reference frames.  相似文献   

2.
In this work we expand the foundational perspective of category theory on quantum event structures by showing the existence of an object of truth values in the category of quantum event algebras, characterized as subobject classifier. This object plays the corresponking role that the two-valued Boolean truth values object plays in a classical event structure. We construct the object of quantum truth values explicitly and argue that it constitutes the appropriate choice for the valuation of propositions describing the behavior of quantum systems.  相似文献   

3.
We develop the idea of employing localization systems of Boolean coverings, associated with measurement situations, in order to comprehend structures of quantum observables. In this manner, Boolean domain observables constitute structure sheaves of coordinatization coefficients in the attempt to probe the quantum world. Interpretational aspects of the proposed scheme are discussed with respect to a functorial formulation of information exchange, as well as, quantum logical considerations. Finally, the sheaf theoretical construction suggests an operationally intuitive method to develop differential geometric concepts in the quantum regime.  相似文献   

4.
We develop a relativistic perspective on structures of quantum observables, in terms of localization systems of Boolean coordinatizing charts. This perspective implies that the quantum world is comprehended via Boolean reference frames for measurement of observables, pasted together along their overlaps. The scheme is formalized categorically, as an instance of the adjunction concept. The latter is used as a framework for the specification of a categorical equivalence signifying an invariance in the translational code of communication between Boolean localizing contexts and quantum systems. Aspects of the scheme semantics are discussed in relation to logic. The interpretation of coordinatizing localization systems, as structure sheaves, provides the basis for the development of an algebraic differential geometric machinery suited to the quantum regime.  相似文献   

5.
In this paper a mathematical scheme for the analysis of quantum event structures is being proposed based on category theoretical methods. It is shown that there exists an adjunctive correspondence between Boolean presheaves of event algebras and quantum event algebras. The adjunction permits a characterization of quantum event structures as Boolean manifolds of event structures.  相似文献   

6.
7.
A major problem in the consistent-histories approach to quantum theory is contending with the potentially large number of consistent sets of history propositions. One possibility is to find a scheme in which a unique set is selected in some way. However, in this paper the alternative approach is considered in which all consistent sets are kept, leading to a type of ‘many-world-views’ picture of the quantum theory. It is shown that a natural way of handling this situation is to employ the theory of varying sets (presheafs) on the spaceB of all nontrivial Boolean subalgebras of the orthoalgebraUP of history propositions. This approach automatically includes the feature whereby probabilistic predictions are meaningful only in the context of a consistent set of history propositions. More strikingly, it leads to a picture in which the ‘truth values’ or ‘semantic values’ of such contextual predictions are not just two-valued (i.e., true and false) but instead lie in a larger logical algebra—a Heyting algebra—whose structure is determined by the spaceB of Boolean subalgebras ofUP. This topos-theoretic structure thereby gives a coherent mathematical framework in which to understand the internal logic of the many-world-views picture that arises naturally in the approach to quantum theory based on the ideas of consistent histories.  相似文献   

8.
A preliminary investigation is made of possible applications in quantum theory of the topos formed by the collection of all M-sets, where M is a monoid. Earlier results on topos aspects of quantum theory can be rederived in this way. However, the formalism also suggests a new way of constructing a ‘neo-realist’ interpretation of quantum theory in which the truth values of propositions are determined by the actions of the monoid of strings of finite projection operators. By these means, a novel topos perspective is gained on the concept of state-vector reduction.  相似文献   

9.
A preliminary investigation is made of possible applications in quantum theory of the topos formed by the collection of all M-sets, where M is a monoid. Earlier results on topos aspects of quantum theory can be rederived in this way. However, the formalism also suggests a new way of constructing a ‘neo-realist’ interpretation of quantum theory in which the truth values of propositions are determined by the actions of the monoid of strings of finite projection operators. By these means, a novel topos perspective is gained on the concept of state-vector reduction.  相似文献   

10.
In this paper I propose a reformulation and solution of the measurement problem of quantum mechanics. The reformulation depends on a quantum logical interpretation of quantum mechanics, broadly construed. The solution depends on a theorem about partial Boolean algebras which is proved here.  相似文献   

11.
We construct a sheaf-theoretic representation of quantum observables algebras over a base category equipped with a Grothendieck topology, consisting of epimorphic families of commutative observables algebras, playing the role of local arithmetics in measurement situations. This construction makes possible the adaptation of the methodology of Abstract Differential Geometry (ADG), à la Mallios, in a topos-theoretic environment, and hence, the extension of the “mechanism of differentials” in the quantum regime. The process of gluing information, within diagrams of commutative algebraic localizations, generates dynamics, involving the transition from the classical to the quantum regime, formulated cohomologically in terms of a functorial quantum connection, and subsequently, detected via the associated curvature of that connection.  相似文献   

12.
The paper contains a relatively non-technical summary of some recent work by the author and Jeremy Butterfield. The goal is to find a way of assigning meaningful truth values to propositions in quantum theory: something that is not possible in the normal, instrumentalist interpretation. The key mathematical tool is presheaf theory where multi-valued, contextual truth values arise naturally. We show how this can be applied to quantum theory, with the ‘contexts’ chosen to be Boolean subalgebras of the set of all projection operators.  相似文献   

13.
We claim that both multipartiteness and localization of subsystems of compound quantum systems are of an essentially relative nature crucially depending on the set of operationalistically available states. In a more general setting, to capture the relativity and variability of our structures with respect to the observation means, sheaves of algebras may need be introduced. We provide the general formalism based on algebras which exhibits the relativity of multipartiteness and localization.  相似文献   

14.
15.
The word proposition is used in physics with different meanings, which must be distinguished to avoid interpretational problems. We construct two languages ℒ * (x) and ℒ(x) with classical set-theoretical semantics which allow us to illustrate those meanings and to show that the non-Boolean lattice of propositions of quantum logic (QL) can be obtained by selecting a subset of p-testable propositions within the Boolean lattice of all propositions associated with sentences of ℒ(x). Yet, the aforesaid semantics is incompatible with the standard interpretation of quantum mechanics (QM) because of known no-go theorems. But if one accepts our criticism of these theorems and the ensuing SR (semantic realism) interpretation of QM, the incompatibility disappears, and the classical and quantum notions of truth can coexist, since they refer to different metalinguistic concepts (truth and verifiability according to QM, respectively). Moreover one can construct a quantum language ℒ TQ (x) whose Lindenbaum–Tarski algebra is isomorphic to QL, the sentences of which state (testable) properties of individual samples of physical systems, while standard QL does not bear this interpretation.  相似文献   

16.

This study aims to provide an analysis of the complementarity principle in quantum theory through the establishment of partial structural congruence relations between the quantum and Boolean kinds of event structure. Specifically, on the basis of the existence of a categorical adjunction between the category of quantum event algebras and the category of presheaves of variable Boolean event algebras, we establish a twofold complementarity scheme consisting of a generalized/global and a restricted/local conceptual dimension, where the latter conception is subordinate to and constrained by the former. In this respect, complementarity is not only understood as a relation between mutually exclusive experimental arrangements or contexts of comeasurable observables, as envisaged by the original conception, but it is primarily comprehended as a reciprocal relation concerning information transfer between two hierarchically different structural kinds of event structure that can be brought into partial congruence by means of the established adjunction. It is further argued that the proposed category-theoretic framework of complementarity naturally advances a contextual realist conceptual stance towards our deeper understanding of the microphysical nature of reality.

  相似文献   

17.
The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr’s idea that the empirical content of quantum physics is accessible only through classical physics, we show how a noncommutative C*-algebra of observables A induces a topos \({\mathcal{T}(A)}\) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra \({\underline{A}}\) . According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum \({\underline{\Sigma}(\underline{A})}\) in \({\mathcal{T}(A)}\) , which in our approach plays the role of the quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on \({\underline{\Sigma}}\) , and self-adjoint elements of A define continuous functions (more precisely, locale maps) from \({\underline{\Sigma}}\) to Scott’s interval domain. Noting that open subsets of \({\underline{\Sigma}(\underline{A})}\) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos \({\mathcal{T}(A)}\).These results were inspired by the topos-theoretic approach to quantum physics proposed by Butterfield and Isham, as recently generalized by Döring and Isham.  相似文献   

18.
We construct new examples of ergodic coactions of compact quantum groups, in which the multiplicity of an irreducible corepresentation can be strictly larger than the dimension of the latter. These examples are obtained using a bijective correspondence between certain ergodic coactions on C*-algebras and unitary fiber functors on the representation category of a compact quantum group. We classify these unitary fiber functors on the universal orthogonal and unitary quantum groups. The associated C*-algebras and von Neumann algebras can be defined by generators and relations, but are not yet well understood.  相似文献   

19.
The generalization of the construction of the lattice of varieties for partial algebras is used for sets with relative inverses. There are many quantum structures representable by sets with relative inverses (orthomodular lattices, orthoalgebras, D-posets, test spaces,...). Varieties covering the trivial variety are investigated for the case of closed (strongest type) subalgebras and closed homomorphisms. Some similar results for weaker types are given. The context with set representation problems is considered for the set-theoretic difference operations.  相似文献   

20.
The meaning of truth in quantum mechanics is considered in order to respond to some objections raised by B. d'Espagnat against a logical interpretation of quantum mechanics recently proposed by the author. A complete answer is given. It is shown that not only can factual data be said to be true, but also some of their logical consequences, so that the definition of truth given by Heisenberg is both extended and refined. Some nontrue but reliable propositions may also be used, but they are somewhat arbitrary because of the complementarity principle. For instance, the propositions expressing wave packet reduction can be either true or reliable, according to the case under study. Separability is also discussed: as far as the true properties of an individual system are concerned, quantum mechanics is separable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号