首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emanation thermal analysis (ETA) was used to characterize the thermal reactivity of amorphous brannerite mineral of general formula U1–xTi2+xO6 (locality El Cabril, near Cordoba, Spain). It was demonstrated that on sample heating up to 880°C microstructure changes taking place in the sample were accompanied by the formation of new radon diffusion paths, followed by their closing up during the final transformation of amorphous to crystalline brannerite in the range 900–1020 °C. Relative changes in structure irregularities that served as radon diffusion paths during heating and subsequent cooling of the sample to temperatures of 300, 550, 750, 880, 1020 and 1130°C, respectively, were determined from the ETA results. Mass losses in temperature ranges of 230–315, 570–760 and 840–1040°C were observed by thermogravimetry. Mass spectrometry indicated the release of CO2 mainly due to the decomposition of minor carbon amount in the brannerite mineral sample.  相似文献   

2.
Summary Emanation thermal analysis (ETA) was used to characterize thermal behaviour of the perovskite ceramics designed as a matrix for the encapsulation of high level radioactive waste. The perovskite ceramics (composition CaTiO3 where small admixtures of Nd and Ce simulated the radioactive elements Cm and Pu, respectively) was prepared from sol-gel precursors by hot pressing at 1250°C/29 MPa for 2 h. The chemical durability of the ceramics was tested by leaching in the solution with pH 2 at 90°C/2 months. ETA results of as-leached and as-prepared perovskite ceramics samples were compared and evaluated by means of a mathematical model. Three temperature ranges of the annealing of structure defects in the as-prepared sample were determined from the decrease of radon release rate in the ranges 280-560, 800-960 and 960-1200°C, respectively. One annealing step was determined for the as-leached sample from the decrease of radon release rate in the range of 800-950°C.  相似文献   

3.
Processes taking place during formation of B-C-N ceramics by thermal treatment of organic precursors were investigated using emanation thermal analysis (ETA), differential thermal analysis (DTA) and thermogravimetry (TG). An additional information about thermal behavior of precursors used for preparation of BC4N, BN and CNx ceramic systems by heating in argon up to 1100°C was obtained. The ETA enabled us to characterize microstructure changes in the samples at in situ conditions of thermal treatment. A good agreement of ETA, TG and DTA results was found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Thermal behaviour of N-doped titania powders prepared by heat treatment of anatase in gaseous ammonia at 550 and 575°C, respectively, was characterized by emanation thermal analysis (ETA). The ETA results were used to assess transport properties of the samples subsurface using the mobility data of radon atoms previously incorporated into the samples to the depth of 60 nm. It was demonstrated that the radon permeability of anatase in the temperature range 50–500°C was enhanced for the N-doped titania as compared to the non-doped titania powder. Microstructure changes accompanying the anatase-rutile transition were pointed out from the decrease of the radon release rate in the temperature range 850–1000°C. The results of surface area and porosity measurements, DTA results as well XRD patterns supported the ETA results.  相似文献   

5.
Thermal behavior of talc samples (from locality Puebla de Lillo, Spain) were characterized by emanation thermal analysis (ETA), DTA and TG. The ETA, based on the measurement of radon release rate from samples, revealed a closing up of surface micro-cracks and annealing of microstructure irregularities of the talc samples on heating in the range 200–500°C. For ground talc sample a crystallization of non-crystalline phase formed by grinding, into orthorhombic enstatite was characterized as a decrease of radon mobility in the range 785–825°C and by a DTA exothermal effect with the maximum at 830°C. ETA results characterized the microstructure development of the talc samples on heating and served to evaluate their radon mobility and transport properties on heating and cooling. Transport properties of the talc samples were evaluated by using ETA experimental data measured during heating to 600 and 1300°C, respectively, and subsequent cooling to room temperature.  相似文献   

6.
Results of emanation thermal analysis (ETA) characterizing microstructure changes of SiC based materials during heat treatment in argon are demonstrated. This method made it possible to reveal fine changes of the texture of SiC nano-sized powders, SiC micro-sized powders and SiC whiskers under in situconditions of the heating. ETA curves can serve as fingerprints of the respective samples.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

7.
Emanation thermal analysis (ETA) was used for thermal characterization of microstructure changes taking place during heating of synthetic gibbsite sample in argon in the range of 25–1200°C. Microstructure development and the increase of the surface area under in-situ conditions of the sample heating were characterized. The increase of the radon release rate from 130–330°C monitored the increase of the surface area due to the dehydration of Al(OH)3. During heating of the sample in the range 450–1080°C the ETA results characterized the annealing of surface and near surface structure irregularities of intermediate products of gibbsite heat treatment. The mathematical model for the evaluation of the ETA experimental results was proposed. From the comparison of the experimental ETA results with the model curves it followed that the model is suitable for the quantitative characterization of microstructure changes taking place on heating of gibbsite sample. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Raw and thermally treated sepiolites from the Mantoudi area, Euboea, Greece, were investigated by means of X-ray diffraction (XRD) in combination with thermo-gravimetric analysis (TG/DTG) and differential thermal analysis (DTA), as well as Fourier transform (FTIR) spectroscopy, in order to study the collapse of the sepiolite structure with increasing temperature. The main mineral constituent (>95%) is a well crystallized sepiolite. Quartz and dolomite occur in minor amounts. Calcination of the samples was carried out up to 350, 720 and 820°C, for 2 h, and ‘sepiolite dihydrite’, ‘sepiolite anhydrite’ and ‘enstatite’ were formed, respectively, as magnesium co-ordinated water and octahedrically co-ordinated hydroxyl groups, are removed and the dehydroxylated phase recrystallize to enstatite (MgSiO3). These structural and textural changes play an important role to the properties and uses of the studied sepiolites.  相似文献   

9.
Emanation thermal analysis (ETA), thermogravimetry and high temperature XRD were used to characterize the thermal behavior during dehydration of natural Na montmorillonite (Upton Wyoming, USA) and homoionic montmorillonite (MMT) samples saturated with different cations, i.e. Li+, Cs+, NH4+, Mg2+ and Al3+. ETA results characterized radon mobility and microstructure changes that accompanied the mass loss of the samples due to dehydration on heating in air. A collapse of interlayer space between the silicate sheets after water release from the MMT samples was characterized by a decrease of the radon release rate, ΔE. Decreases in c-axis basal spacing (d 001) values determined from XRD patterns for the different montmorillonite samples follow the sequence:
The decrease of the radon release rate (ΔE) determined by ETA that characterized microstructure changes due to collapse of interlayer space corresponded well to differences in the c-axis basal spacing (Δd 001) values determined from the XRD patterns before and after samples dehydration.  相似文献   

10.
Emanation thermal analysis (ETA), DTA, SEM, and XRD were applied for the characterization of the effect of Na+ and NH 4 + ions used for saturation of natural Mg-vermiculite on the microstructure during heating. The microstructure changes were characterized by ETA under in situ conditions of samples heating in air in the temperature range 20–1300°C. It was found that Na+ and NH 4 + ions have a significant effect on the microstructure changes during heat treatment of the natural Mg-vermiculite sample saturated with these ions. For Mg-vermiculite and Na+ saturated vermiculite thet emperatures of the onset of the collapse of interlaminar space were determined by ETA. Differences in thermal stability of the microstructure of dehydrated vermiculite samples were observed by ETA: the microstructure of dehydrated Mg-vermiculite, and Na-vermiculite was found stable until 650 and 350°C, respectively. For dehydrated NH4-vermiculite the annealing of the microstructure started at 730°C. The onset temperatures of the formation of new crystalline phases were indicated by ETA as the increase of the radon release rate. The onset temperatures of the ordering of the vermiculite structure or sintering under presence of the glassy stage (for Na-vermiculite), respectively, were determined from the decrease of the radon release rate. The ETA results were confirmed by DTA, XRD and SEM.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

11.
Bi2Al4O9 ceramics are difficult to sinter to greater than 80% theoretical density due to peritectic decomposition at 1,070 °C. A novel processing method is discussed where a high-bismuth oxide-based liquid is used as a sintering aid. After sintering, the high bismuth oxide phase is removed by leaching with 40% acetic acid. The resulting samples are phase pure and ∼91% dense. The grain size varies in a wide range with the average grain size of ∼1 μm. The electrical properties of these ceramics were measured as functions of temperature (550–850 °C) and oxygen partial pressure (6×10−6–1 atm). The total conductivity was separated into electronic and ionic contributions. The low ionic conductivity indicates that the material is not an ‘intrinsically defective fast ion conductor’. The ionic conductivity is due almost exclusively to compensating oxygen vacancies related to impurities. With increasing temperature and decreasing oxygen partial pressure, the electronic conduction dominates over the ionic conduction.  相似文献   

12.
Emanation Thermal Analysis (ETA), based on the measurement of the release of radon from previously labelled samples, has been used for 'in-situ’ characterisation of the morphology changes of intercalated montmorillonitic clay. The thermal behaviour of hydroxyaluminium intercalated montmorillonite was monitored in course of the preparation of alumina pillared montmorillonite, making possible to determine optimal temperature for the isothermal treatment of the intermediate product. Moreover, the thermal stability of alumina pillared montmorillonite porous structure was determined from the ETA data. A good agreement of ETA data and surface area, XRD patterns. DTA, and TG resulted was found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Acid leaching of vermiculite is an interesting procedure to prepare high surface area porous silica. Thermal behaviour of unground and ground vermiculite leached with HCl solutions has been studied by TG, DTA, ETA and high temperature XRD. Important differences have been observed in the thermal behaviour of unground and ground vermiculite after the acid treatments. Thus, for the acid-treated unground vermiculite, dehydrated vermiculite, enstatite and cristobalite were formed during the heating, while for the acid-treated ground vermiculite only iron oxides and cristobalite phases were observed. Structural modifications due to acid treatment were responsible for changes in the transport properties determined by ETA for the vermiculite samples.  相似文献   

14.
Emanation thermal analysis (ETA), based on the measurement of the release of radon previously incorporated into the sample, was used to characterize the differences in the thermal behavior porous titania film (thickness 200 nm),when heated in argon and in oxygen, respectively, in the range from 20 to 800°C. It was observed that the annealing of porosity and structure defects in the near surface layers of the porous titania film (anatase) was enhanced on heating in oxygen in comparison to the heating in argon. ETA results were compared with SEM micrographs and XRD patterns of the titania film samples heated to 500 and 800°C, respectively. A mathematical model was used for the evaluation of the temperature dependence of the titania films microstructure development.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
The present study was carried out for evaluating the retention behavior of sanitary sewage in relation to cadmium and cobalt ions in an ascendant continuous-flow reactor. It was found that the studied sludge presented a high assimilation of the metals, probably due to the presence of anionic groups, which favors adsorption and complexation processes. Thermal analyses of the samples showed a shift in the thermal decomposition of the ‘in natura’ sludge, when compared with those of the samples spiked with the metals, confirming the possibility of interactions between the heavy metals and the anionic groups present in the sludge.  相似文献   

16.
Emanation thermal analysis (ETA) and thermogravimetry measured in the range 20–1000°C was used to characterize the thermal behaviour of Na-montmorillonite (Upton Wyoming, USA) and homoionic montmorillonite samples prepared by saturation with cations Li+ , Mg2+ , Al3+ , respectively. It was confirmed that the presence of cations used for montmorillonite saturation (Li+ , Mg2+ , Al3+ ) influenced the thermal behaviour of the samples. The results that indicated the decrease of radon release rate corresponding to a collapse of the interlayer space between the silicate sheets after water release and the crystallization of meta-montmorillonite in the respective temperature intervals were compared. From the ETA results it followed that the thermal stability of intermediate microstructure depends on the type of exchanged cation. A mathematical model was used to evaluate the ETA data.  相似文献   

17.
The thermal behaviour of low-density polyethylene (LDPE) as powder and pellet have been characterised by means of the emanation thermal analysis (ETA) during heating in air. The ETA was used in the study of LDPE polymer before and after irradiation to various doses of high energy electrons. It was shown that the ETA reflects microstructure changes taking place as the result of thermal degradation and oxidation pyrolysis of the polymer samples. It was shown in the study of LDPE products, resulting after the electron-beam treatment, that the results of ETA reflect structural changes caused by the radiation over the range of absorbed doses from 0 to 20 MGy. The annealing chemical radicals produced by the electron-beam irradiation was assessed by comparing ETA curves measured during first and second heating runs.  相似文献   

18.
Detailed thermal analysis studies have shown that a ‘molten starch’ phase is obtained during controlled heating of starch. Before the ‘molten’ stage, depolymerisation of starch produces lower molecular weight compounds like dextrins, oligo, di- and monosaccharides, as well as other types of compounds. These compounds should have ideal properties for plasticizing starches because of the similarities of the molecules, helping lower phase changes in collaboration with molecular weight decrease. Interestingly, it was found previously that these materials only act as adhesives in a narrow temperature range around 523 K (250 °C) (Shuttleworth et al. J Mater Chem 19(45):8589–8593, 2009). Materials were investigated using thermal and mechanical analyses of single lap joints.  相似文献   

19.
The application of modulated temperature programming to thermomechanical analysis affords a method for measuring the ‘true’ thermal expansion coefficients of materials that deform irreversibly during normal TMA. This may arise from creep under the applied load or changes in dimensions due to relaxation of orientation. Acrylic fibres made with various degrees of orientation shrink to different extents on heating but all show the same ‘true’ thermal expansion coefficients using this approach. The application of modulated temperature programming to Dynamic Mechanical Analysis is also discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
A method for the continuous-flow fractionation of particles in a transverse centrifugal field in a rotating conoidal coiled (RCC) column has been developed. A model of a planetary centrifuge with a conoidal drum of a special construction has been tested. The effects of the rotation and revolution speed of the conoidal RCC, as well as the direction and pumping rate of the mobile phase on the behavior of particles smaller than 1 μm have been studied. The conditions have been selected and optimized for the retention and elution of spherical particles of the ‘150 nm’, ‘400 nm’, and ‘900 nm’ standard samples of silica gel (Polyscience Inc.). The possibility of using RCC for the analysis and production of monodisperse standard particle samples has been demonstrated. In particular, the ‘900 nm’ particles have been separated from admixtures of small (100–200 nm) particles and nonspherical 1–2 μm particles present in the sample. The separated fractions have been characterized by electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号