首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Powder samples of Fe25Al75 were prepared by the mechanical alloying method. Mössbauer effect, X-ray diffraction and DSC measurements indicate that Fe and Al crystalline powder transform into Fe-Al amorphous powder with increasing milling time. The X-ray diffraction patterns of the milled Fe25Al75 do not clearly show a sign of the existence of the intermetallic phases or Fe-Al solid solution. However, Mössbauer measurements reveal two sites with hyperfine magnetic fields 30.2 and 26.0 T. These sites form locally during the milling process and then they disappear.  相似文献   

2.
Nanostructured Fe50Co50 powders were prepared by mechanical alloying of Fe and Co elements in a vario-planetary high-energy ball mill. The structural properties, morphology changes and local iron environment variations were investigated as a function of milling time (in the 0-200 h range) by means of X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray analysis and 57Fe Mössbauer spectroscopy. The complete formation of bcc Fe50Co50 solid solution is observed after 100 h milling. As the milling time increases from 0 to 200 h, the lattice parameter decreases from 0.28655 nm for pure Fe to 0.28523 nm, the grain size decreases from 150 to 14 nm, while the meal level of strain increases from 0.0069% to 1.36%. The powder particle morphology at different stages of formation was observed by SEM. The parameters derived from the Mössbauer spectra confirm the beginning of the formation of Fe50Co50 phase at 43 h of milling. After 200 h of milling the average hyperfine magnetic field of 35 T suggests that a disordered bcc Fe-Co solid solution is formed.  相似文献   

3.
The mechanosynthesis of Fe50Zn50 alloy resulted in the formation of the bcc Fe(Zn) solid solution after 20 h of milling. Structural transformations induced by mechanical alloying and heating, and magnetic properties of the powders were studied by Mössbauer spectroscopy, X-ray diffraction, Faraday balance and vibrating sample magnetometry techniques. All alloys studied exhibit strong magnetic ordering with Curie temperatures close to 900 K. Room temperature Mössbauer measurements revealed distinguished magnetic environments in the samples. The decrease of coercivity with prolonged milling time was attributed to the reduction or averaging of local magnetic anisotropies.  相似文献   

4.
Amorphous Fe1–x Ti x (x=0.50, 0.60) powders were produced by mechanical alloying from pure elemental powders in a vibratory ball-mill. X-ray diffraction (XRD) and Mössbauer effect (ME) were used to study the progress of amorphization and the property of hydrogen absorption in Fe-Ti alloys. The amorphization process and the properties of the amorphous phase are discussed.  相似文献   

5.
The properties of the double iron and tungsten carbide prepared by mechanical alloying technique (MA) from elemental powders are reported. The samples were milled for 1, 3, 5, 10, 15, 20, 25 and 30 h. The alloy progress for each milling time was evaluated by X-ray diffraction (XRD) and 57Fe Mössbauer spectrometry. Once the alloy was consolidated two sorts of paramagnetic sites and a magnetic distribution were detected according to the Mössbauer fitting. The majority doublet could correspond to Fe6W6C ternary carbide as X-ray diffraction suggests, and the other could be Fe3W3C. The hyper fine parameters are reported. Vickers microhardness measurements of 30 h milled sample was conducted at room temperature with a load of 0.245 N for 20 s.  相似文献   

6.
Alloys of Fe–Ga with starting compositions of 17, 19, 21, 23, and 25 at% Ga and Fe81Ga17Z2 (Z=Si, Sn) have been prepared by mechanical alloying. Samples were milled in a SPEX Model 8000 mill with a ball to sample weight ratio of about 4:1. Phase formation as a function of milling time has been investigated for the 19 at% Ga sample and suggests that milling times of 12 h produce fully alloyed samples. Alloys have been studied by electron microprobe, X-ray diffraction, vibrating sample magnetometery and 57Fe Mössbauer effect spectroscopy. Fully milled powders have measured compositions of Fe100−xGax with x=15.7, 17.0, 19.0, 22.4, and 24.0 and Fe83.1Ga15.2Z1.7 (for both Z=Si and Sn). X-ray diffraction showed the presence of a disordered bcc phase with no indication of an ordered D03 phase. However, the latter is difficult to observe with X-ray diffraction because of the low intensity of the fcc superlattice peaks. A bimodal Fe hyperfine field distribution as obtained from Mössbauer effect spectra indicated the presence of two discrete Fe environments. The results suggested a lower degree of Ga clustering than has been previously observed in Fe–Ga alloys, of similar composition, prepared by melt spinning. The microstructure is similar to that of Fe–Ga thin films prepared by combinatorial sputtering. Some samples have also been studied after annealing at 800 °C for 8 h. No changes were observed in X-ray diffraction patterns after annealing. However, Mössbauer effect studies show the formation of D03 and L12 order in annealed samples analogous to the phases observed in melt spun ribbons of similar composition.  相似文献   

7.
The sequence of solid state reactions upon the mechanical alloying of Mo and Fe powders with an 80: 20 atomic ratio was established by means of Mössbauer spectroscopy and X-ray diffraction. At the first stage, a nanostructure and Mo63Fe37 hexagonal close packed (HCP) phase are formed in Mo body-centered cubic lattice (BCC) particles. At the second stage, a body-centered cubic lattice of Mo-Fe solid solution is formed. The process is accompanied by the formation of a minor amount (about 20%) of X-ray amorphous phase.  相似文献   

8.
Nanocrystalline Fe50Ni50 alloy samples were prepared by the mechanical alloying process using planetary high-energy ball mill. The alloy formation and different physical properties were investigated as a function of milling time, t, (in the 0–50 h range) by means of the X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), energy dispersive X-ray (EDAX), Mössbauer spectroscopy and the vibrating sample magnetometer (VSM). The complete formation of γ-FeNi is observed after 24 h milling. When milling time increases from 0 to 50 h, the lattice parameter increases towards the Fe50Ni50 bulk value, the grain size decreases from 67 to 13 nm, while the strain increases from 0.09% to 0.41%. Grain morphologies at different formation stages were observed by SEM. Saturation magnetization and coercive fields derived from the hysteresis curves are discussed as a function of milling time.  相似文献   

9.
Double iron and aluminum carbides were prepared by mechanical alloying from elemental powders, with a ball-to-powder weight ratio 20:1. The samples were milled for 1, 3, 5, 10, 15, 20 and 25 h. The alloy progress for each milling time was evaluated by X-ray diffraction (XRD) and 57Fe Mössbauer spectroscopy. Once the alloy was consolidated two sorts of paramagnetic sites and a magnetic distribution were detected according to the Mössbauer fit. The majority doublet could correspond to Fe3AlC0.5 carbide as X-ray diffraction suggest, and the other could be Fe3AlC0.69; the magnetic distribution corresponding to Fe3Al phase, Fe7C3 and Fe5C2 single carbides. The hyperfine parameters are reported.  相似文献   

10.
Alloys of the composition Al98Fe2 have been prepared by rapid quenching from the melt and mechanical alloying methods and have been studied by Xray diffraction techniques and room temperature 57Fe Mössbauer effect methods. Results may be summarized as follows: The rapidly quenched sample is a single phase supersaturated fcc Al–Fe alloy. Mössbauer effect spectra indicate the presence of a substantially greater degree of Fe clustering than is expected for a random distribution of atoms on the lattice sites. Mechanically alloyed samples have been studied as a function of milling time and show the initial formation of a supersaturated fcc phase with microstructural properties which are quite similar to those of the rapidly quenched sample. Further milling results in the reduction of the average grain size and the formation of an amorphous phase. Mössbauer studies and previously reported phase diagrams suggest that a substantial fraction of the Fe resides in this phase.  相似文献   

11.
Fe65Ni35 samples were prepared by mechanical alloying (MA) with milling times of 5, 6, 7, 10 and 11 h, using a ball mass to powder mass ratio of 20:1 and at 280 rpm. The samples were characterized by X-ray diffraction (XRD) and transmission 57Fe Mössbauer spectrometry. The X-ray diffraction pattern showed the coexistence of one body centered cubic (BCC) and two face centered cubic (FCC1 and FCC2) structural phases. The lattice parameters of these phases did not change significantly with the milling time (2.866 Å, 3.597 Å and 3.538 Å, respectively). After 10 h of milling, the X-ray diffraction pattern showed clearly the coexistence of these three phases. Hence, Mössbauer spectrometry measurements at low temperatures from 20 to 300 K of this sample were also carried out. The Mössbauer spectra were fitted using a model with three components: the first one is a hyperfine magnetic field distributions at high fields, related to the BCC phase; the second one is a hyperfine magnetic field distribution involving low hyperfine fields related to a FCC phase rich in Ni, and the third one is a singlet related to a FCC phase rich in Fe, with paramagnetic behavior. As proposed by some authors, the last phase is related with the antitaenite phase.  相似文献   

12.
Fe x Cu100–x magnetoresistive alloys were produced by mechanical alloying. X-ray diffraction shows fcc structure. The room-temperature Mössbauer spectra evolves from an asymmetrical doublet below x=25%, to a broad magnetic hyperfine field distribution above this concentration. Quadrupole splitting of the doublet varies between 0.48 and 0.57 mm/s, and its isomer shift from 0.16 to 0.29 mm/s. Low-temperature Mössbauer spectroscopy displays a B hf distribution. Magnetization measurements display different features depending on concentration, from mictomagnetism to ferromagnetism. Low-temperature magnetoresistance is measured. Samples with x20% exhibit larger magnetoresistivity ratios. Bulk and hyperfine magnetic properties are correlated in order to explain magnetoresistivity features of these samples.  相似文献   

13.
Nanocrystalline Fe/Zr alloys have been prepared after milling for 9 h the mixture of elemental Fe and Zr powders or the arc-melting produced Fe2Zr alloy by using mechanical alloying and mechanical milling techniques, respectively. X-ray and Mössbauer results of the Fe and Zr powders, mechanically alloyed, suggest that amorphous Fe2Zr phase and $\upalpha$ -Fe(Zr) nanograins have been produced with relative concentrations of 91% and 9%, respectively. Conversely, the results of the mechanically milled Fe2Zr alloy indicate that nanograins of the Fe2Zr alloy have been formed, surrounded by a magnetic inter-granular phase that are simultaneously dispersed in a paramagnetic amorphous phase.  相似文献   

14.
We studied the thermal stability of nanocrystalline (Fe3Si)0.95Nb0.05 and Fe3Si alloys prepared by high-energy ball milling. Alloys were characterized by Mössbauer spectrometry, as well as X-ray diffractometry and transmission electron microscopy. The Nb-containing alloy was considerably more stable against grain growth than was the binary Fe3Si alloy. Mössbauer spectrometry showed that the Nb atoms segregated away from the DO3 ordered domains, probably to grain boundaries, and thus provided a strong suppression on grain growth.  相似文献   

15.
Thermodynamically stable icosahedral Al65Cu20Fe15 alloy is studied using57Fe Mössbauer experiments. Its quasicrystalline structure is subjected to a low energy process of mechanical grinding up to 800 hours. The influence of ball milling on the electric field gradient magnitudes is discussed using an analysis of the Mössbauer spectra to different fitting models. The presence of an amorphous phase which co-exists with the quasicrystalline one is revealed in the early stage of mechanical grinding.  相似文献   

16.
The alloys between a transition metal and a rare earth present magnetic and magneto optical properties of exceptional interest for the production of magnetic devices for information storage. In this work we report the magnetic and structural properties, obtained by Mössbauer spectrometry (MS) and X-ray diffraction (XRD), of Tb0.257?x Nd x Fe0.743 alloys with x?=?0 and 0.257 prepared by mechanical alloying during 12, 24 and 48 h, to study the influence of the milling time in their magnetic and structural properties. The X-rays results show for all the samples that the α-Fe and an amorphous phase are always present. The first decreases and the second increases with the increase of the milling time. Mössbauer results show that the amorphous phase in samples with Nd is ferromagnetic and appears as a hyperfine field distribution and a broad doublet, and that as the milling time increases the paramagnetic contribution increases. For samples with Tb the amorphous phase is paramagnetic and appears as a broad doublet which increases with the milling time and for 48 h milling it appears an additional broad singlet.  相似文献   

17.
Mechanically alloyed Fe100???x Al x powders, with 20≤?x?≤90, have been studied by X-ray diffraction and room temperature 57Fe Mössbauer spectroscopy. The milling time was chosen such that complete alloying does not take place. For a fixed milling time of 10 h, the rate of alloying was seen to increase exponentially with increase in Fe content. Mössbauer spectra of all the samples consist of a broad magnetic sextet and a quadrupole doublet. The isomer shifts and quadrupole splitting of the doublets are typical of Al-rich, Fe–Al alloys. The area under the quadrupole doublet is a maximum for x?=?66. Analysis of the Mössbauer spectra indicates the formation off- stoichiometric Fe3Al phase for x?<?66, while the formation of Fe clusters is largely responsible for the magnetic hyperfine component in x?≥?66 compositions.  相似文献   

18.
B2-Fe47Al53 intermetallics has been produced by mechanical alloying in a planetary ball mill, using elemental Fe, Al and Ni powder mixture. The microstructural and magnetic properties of the mechanically alloyed Fe50Al40Ni10 powdered samples were investigated by X-ray diffraction and 57Fe Mössbauer spectrometry at 300 and 77 K. As resulted from the X-ray diffraction studies, the ordered B2 structure was formed in the Fe50Al40Ni10 powder, together with the bcc αi-Fe(Al, Ni) (i = 1, 2) solid solutions. Further milling led to a partial disordering of B2-Fe47Al53; it has undergone an order–disorder transition which is characterized by an expansion of the volume Δa0 (lattice disorder) and a magnetic transition from the paramagnetic to ferromagnetic state which is characterized by strong ferromagnetic interactions in the alloy. The nanocrystalline bcc αi-Fe(Al, Ni) solid solution was ferromagnetic with a mean crystallite size of 6 nm.  相似文献   

19.
Kopcewicz  M.  Grabias  A.  Idzikowski  B.  Williamson  D. L. 《Hyperfine Interactions》2002,139(1-4):525-534
The specialized rf-Mössbauer technique is used to elucidate the magnetic properties of NANOPERM-type nanocrystalline alloys. The influence of alloy composition on the soft magnetic properties is studied for the Fe80M7B12Cu1 (M: Ti, Ta, Nb, Mo, Zr) alloys. The rf-Mössbauer experiments allowed us to distinguish magnetically soft nanoclusters from magnetically harder microcrystalline phases. The measurements performed as a function of the rf field intensity allowed the determination of the distribution of anisotropy fields related to the size distribution of bcc nanoclusters. Smaller anisotropy fields in the nanocrystalline phase were found in Nb-, Zr-, and Mo-containing alloys as compared with the alloys which contain Ti and Ta. The Mössbauer measurements were supplemented by X-ray diffraction determination of the size of nanocrystalline grains.  相似文献   

20.
Microstructure, revealed by X-ray diffraction, transmission electron microscopy and Mössbauer spectroscopy, and magnetic properties such as magnetic susceptibility, its disaccommodation, core losses and approach to magnetic saturation in bulk amorphous (Fe0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)100−xYx (x=0, 2, 3 or 4) alloys in the as-cast state and after the annealing in vacuum at 720 K for 15 min. are studied. The investigated alloys are ferromagnetic at room temperature. The average hyperfine field induction decreases with Y concentration. Due to annealing out of free volumes its value increases after the heat treatment of the samples. The magnetic susceptibility and core losses point out that the best thermal stability by the amorphous (Fe0.61Co0.10Zr0.025Hf0.025Ti0.02W0.02B0.20)97Y3 alloy is exhibited. Moreover, from Mössbauer spectroscopy investigations it is shown that the mentioned above alloy is the most homogeneous. The atom packing density increases with Y concentration, which is proved by the magnetic susceptibility disaccommodation and approach to magnetic saturation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号