首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
研究了MgO(111)负载镍基催化剂催化甲烷二氧化碳重整反应性能,针对镍负载量对反应活性和稳定性的影响进行了探讨。结果表明,随着镍负载量从2%增加到10%,催化剂的活性和稳定性均有所提高,但是当镍负载量进一步增加到20%时,催化剂的活性和稳定性略有下降。利用透射电子显微镜、X射线衍射和H2吸附脱附等手段对催化剂结构进行了表征,利用热重分析、拉曼光谱和透射电镜等手段对反应后回收的催化剂进行了表征。研究发现,随着镍负载量的增大,活性金属镍的颗粒粒径呈现增长趋势,并且在反应过程中显示出不同的失活方式。2%Ni/MgO(111)催化剂的失活原因主要以Ni粒子的氧化为主,而负载量大于2%的Ni/MgO(111)催化剂的失活原因则是以积炭为主。  相似文献   

2.
用基于密度泛函理论的第一性原理方法研究了氧原子在具有Pt皮肤的Pt3Ni(111)[记为Pt-skin-Pt3Ni(111)]表面的吸附和扩散特性. 重点研究了氧原子在Pt-skin-Pt3Ni(111)表面的扩散问题, 这对理解Pt-skin-Pt3Ni(111)催化剂的高催化活性有重要意义. 结果表明: 氧原子容易吸附在fcc位; 催化剂Pt3Ni中的Ni原子对催化剂的电子结构有很大影响, 从而改变了其对氧原子的吸附. 用推拉弹性带(NEB)方法搜索氧原子的扩散势垒, 并解释了Pt-skin-Pt3Ni(111)催化剂的高催化活性.  相似文献   

3.
SiO2负载的Au-Ni双金属催化剂在乙炔选择加氢反应中的应用   总被引:1,自引:0,他引:1  
负载型Au催化剂在乙炔选择加氢反应中表现出很高的乙烯选择性,但其转化率相对较低.通过添加第二种金属如Pd,Fe,Ag和Cu等,制备双金属催化剂是提高其在加氢反应中催化活性的一种非常有效的手段.其中Au-Pd双金属催化剂是最受关注的体系之一,Pd的加入可以非常显著地提高其催化乙炔选择加氢反应的活性.据文献报道,与Pd同一主族的Ni也具有较好的加氢活性.尽管与Pd相比,Ni很难与Au形成合金,但目前已有Au-Ni双金属催化剂在多种反应中表现出协同效应的报道,如水气变换、CO氧化以及芳香硝基化合物选择加氢等.因此,向Au催化剂中添加Ni也可能提高催化剂在乙炔选择加氢反应中的催化活性.因此,我们采用两步法制备了一系列SiO2负载的具有不同Ni:Au原子比的Au-Ni双金属催化剂,并将其用于乙炔选择加氢反应,发现Au-Ni双金属催化剂在该反应中表现出了显著的协同效应,其活性明显优于相应单金属催化剂的活性.尽管其乙烯选择性略低于单金属Au催化剂,但明显高于单金属Ni催化剂.通过调节还原温度和/或Ni:Au的比例,对催化剂的性能进行了优化.结果显示,当Ni:Au=0.5时,催化剂表现出最优的综合性能,即兼具较高的乙炔转化率和乙烯选择性.为了研究Au-Ni双金属催化剂中金属纳米粒子的结构、组成以及Au-Ni之间的相互作用,我们对催化剂进行了X射线衍射(XRD)、高分辨透射电镜(HRTEM)、能量散射谱(EDS)以及原位红外光谱(DRIFTS)表征.XRD和TEM结果显示,催化剂中的Au-Ni双金属纳米粒子都具有高分散和粒径均匀的特点.通过EDS分析,发现在Au-Ni双金属催化剂中的单个金属纳米粒子同时含有Au和Ni两种元素,尽管每个纳米粒子中Ni:Au的比例有差异.HRTEM结果发现,Au-Ni双金属纳米粒子的晶格间距介于Au(111)和Ni(111)的晶面间距之间,说明在Au-Ni双金属催化剂中有Au-Ni合金形成.原位DRIFTS结果显示,在Au-Ni双金属催化剂中,Au的存在促进了Ni的还原,说明Au与Ni之间存在紧密的相互作用.综上可见,Au和Ni在乙炔选择加氢反应中所表现出的协同效应主要归功于Au-Ni合金的形成,其中金属态Ni起主要的活性作用,而Au的存在则提高了催化剂的乙烯选择性.  相似文献   

4.
负载型Au催化剂在乙炔选择加氢反应中表现出很高的乙烯选择性,但其转化率相对较低.通过添加第二种金属如Pd,Fe,Ag和Cu等,制备双金属催化剂是提高其在加氢反应中催化活性的一种非常有效的手段.其中Au-Pd双金属催化剂是最受关注的体系之一,Pd的加入可以非常显著地提高其催化乙炔选择加氢反应的活性.据文献报道,与Pd同一主族的Ni也具有较好的加氢活性.尽管与Pd相比,Ni很难与Au形成合金,但目前已有Au-Ni双金属催化剂在多种反应中表现出协同效应的报道,如水气变换、CO氧化以及芳香硝基化合物选择加氢等.因此,向Au催化剂中添加Ni也可能提高催化剂在乙炔选择加氢反应中的催化活性.因此,我们采用两步法制备了一系列Si O2负载的具有不同Ni:Au原子比的Au-Ni双金属催化剂,并将其用于乙炔选择加氢反应,发现Au-Ni双金属催化剂在该反应中表现出了显著的协同效应,其活性明显优于相应单金属催化剂的活性.尽管其乙烯选择性略低于单金属Au催化剂,但明显高于单金属Ni催化剂.通过调节还原温度和/或Ni:Au的比例,对催化剂的性能进行了优化.结果显示,当Ni:Au=0.5时,催化剂表现出最优的综合性能,即兼具较高的乙炔转化率和乙烯选择性.为了研究Au-Ni双金属催化剂中金属纳米粒子的结构、组成以及Au-Ni之间的相互作用,我们对催化剂进行了X射线衍射(XRD)、高分辨透射电镜(HRTEM)、能量散射谱(EDS)以及原位红外光谱(DRIFTS)表征.XRD和TEM结果显示,催化剂中的Au-Ni双金属纳米粒子都具有高分散和粒径均匀的特点.通过EDS分析,发现在Au-Ni双金属催化剂中的单个金属纳米粒子同时含有Au和Ni两种元素,尽管每个纳米粒子中Ni:Au的比例有差异.HRTEM结果发现,Au-Ni双金属纳米粒子的晶格间距介于Au(111)和Ni(111)的晶面间距之间,说明在Au-Ni双金属催化剂中有Au-Ni合金形成.原位DRIFTS结果显示,在Au-Ni双金属催化剂中,Au的存在促进了Ni的还原,说明Au与Ni之间存在紧密的相互作用.综上可见,Au和Ni在乙炔选择加氢反应中所表现出的协同效应主要归功于Au-Ni合金的形成,其中金属态Ni起主要的活性作用,而Au的存在则提高了催化剂的乙烯选择性.  相似文献   

5.
通过液相氢气还原法,在不同温度下制备出了不同(111)晶面占比的Pd单晶纳米颗粒,用活性炭吸附制备成Pd/C纳米催化剂。通过透射电子显微镜(TEM)、傅里叶变换(FFT)、X射线衍射(XRD)表征证实了低温下制备的Pd纳米颗粒具有较高的(111)晶面占比。氢氧脉冲滴定(H_2-O_2)和H_2-程序升温脱附(H_2-TPD)结果显示,上述催化剂表面吸附氢气量与其Pd(111)晶面占比呈线性关系。此外,该系列Pd/C催化剂具有相似的粒径4.3 nm以及较窄的尺寸分布,相近的孔隙参数和Pd负载量,从而可对比(111)晶面比例差异对其加氢性能的影响。3个探针反应(苯乙烯、环己烯和对硝基甲苯的加氢反应)的实验结果表明,相比于低(111)晶面暴露比例的Pd/C催化剂,含有高(111)晶面暴露比例的Pd/C催化剂显示出更高的加氢活性,且Pd(111)晶面比例与氢气消耗速率呈一定的线性关系,这归因于H_2优先吸附于Pd(111)晶面促进了活性氢原子的形成。基于以上分析,高(111)晶面暴露的Pd基催化剂有利于加氢性能的提高。  相似文献   

6.
段林海 《分子催化》2014,(5):418-426
采用共沉淀方法合成了不同Ni/Al比的镍铝类水滑石,将其作为催化剂前驱体,制备了Ni/Al2O3加氢脱硫催化剂.通过X射线衍射法(XRD),程序升温还原(H2-TPR),热重分析(TG),傅里叶变换红外光谱(FT-IR)等技术对催化剂进行了表征.利用10 mL固定床装置在不同温度,压力,体积空速和氢油比条件下对Ni/Al2O3催化剂的加氢脱硫活性进行了评价.结果表明,XRD图和FT-IR图中均出现了Ni-Al类水滑石的特征峰,TG图呈现出两个明显阶段的失重,在Ni-Al2O3-HT的XRD图中最强的衍射角对应单质金属Ni粒子的(111)晶面.脱硫结果显示Ni-Al类水滑石作为前驱体在适当的条件下,FCC汽油的硫含量降至10 ppm以下.类水滑石作为前驱体的Ni/Al2O3加氢脱硫活性很好,说明类水滑石作为前驱体在加氢脱硫领域有好的应用前景.  相似文献   

7.
采用表面活性剂辅助共沉淀法制备了Ni-Mg-Al固体碱催化剂并用于CH4-CO2重整反应,探讨了表面活性剂对Ni(111),Ni(200)晶面的择优取向作用,在800℃下比较了不同表面活性剂制备的催化剂的催化性能,详细考察了CTAB制备的催化剂CB-LDO在不同反应温度下的催化活性和稳定性.采用红外光谱、X射线衍射、程序升温还原、X射线光电子能谱、高分辨透射电镜和程序升温氧化等表征手段分析了催化剂的活性、稳定性和失活原因.结果表明,四丙基氢氧化铵(TPAOH)促进Ni(200)的生长,而聚氧乙烯-聚氧丙烯-聚氧乙烯(P123)、聚乙烯吡咯烷酮(PVP)和十六烷基三甲基溴化铵(CTAB)抑制Ni(200)晶面的生长;Ni(200)的结晶程度对CH4的活化起到关键的作用,催化剂CB-LDO在高温下反应会发生晶型的转化,Ni(200)晶面由于反应过程中生成NiAl2O4尖晶石而得到缓慢释放,使催化剂的活性得以维持较高的水平.  相似文献   

8.
亢丽娜 《分子催化》2014,(2):119-125
采用浸渍法制备了不同Si含量的Ni/SiO2-Al2O3催化剂,通过吡啶-原位傅里叶变换红外(Py-FTIR)、X射线衍射(XRD)、低温N2物理吸附(N2Physisorption)、H2-程序升温还原(H2-TPR)等技术对催化剂进行了表征,并考察了催化剂在水相1,4-丁炔二醇加氢反应中的活性和稳定性.结果表明:SiO2的引入覆盖了部分γ-Al2O3表面,使暴露的Al3+减少,载体表现出部分SiO2的表面性质.随Si含量的增加,Ni/SiO2-Al2O3催化剂初始活性下降,产生这一现象的原因是引入SiO2使活性组分Ni与载体之间相互作用减弱,导致活性组分Ni迁移聚集,且催化剂的孔容和孔径减小.同时,SiO2显著抑制了γ-Al2O3的水合,催化剂的使用稳定性随Si含量的增加而提高.当Si含量为3%时,催化剂的初始活性下降幅度较小,且催化剂的水热稳定性显著提高,表现出最佳的反应性能.  相似文献   

9.
张颜鑫  张因  赵永祥 《分子催化》2013,27(4):349-355
采用浸渍法制备了四方相ZrO2(t-ZrO2)和单斜相ZrO2(m-ZrO2)负载的Ni含量为10%的催化剂,在连续流动微反装置上考察了Ni/m-ZrO2以及不同温度焙烧Ni/t-ZrO2催化剂的CO甲烷化催化活性.采用N2物理吸附-脱附、H2-TPR、XRD、CO-TPSR及原位漫反射傅里叶变换红外光谱等技术对催化剂进行了表征.结果表明,在CO体积分数为1%,空速为20 000 h-1,常压的反应条件下,当CO转化率为50%时,Ni/m-ZrO2-673和Ni/t-ZrO2-673催化剂的反应温度分别为445 K和488 K,Ni/m-ZrO2-673催化剂的CO甲烷化活性远高于Ni/t-ZrO2-673催化剂.随焙烧温度的升高,Ni/t-ZrO2催化剂的CO甲烷化活性评价显著升高,产生这一现象的原因是在高温焙烧过程中Ni/t-ZrO2催化剂表面的t-ZrO2已转化为m-ZrO2,以m-ZrO2为载体的催化剂因m-ZrO2表面具有较多的配位不饱和O2-碱性中心和配位不饱和Zr4+-O2-位点而表现出高的CO甲烷化活性.  相似文献   

10.
采用密度泛函理论,对Pt(111)和Pt3Ni(111)表面上CO和O的单独吸附、共吸附以及CO的氧化反应进行了系统的研究. 结果表明, Pt3Ni(111)表面上CO的吸附弱于Pt(111)表面, O的吸附明显强于Pt(111)表面. 两个表面表现出相似的CO催化氧化活性. 表面Ni的存在不但稳定了O的吸附,同时也降低了过渡态O的能量.  相似文献   

11.
用共沉淀法制备Ce O_2-Zr O_2复合氧化物载体,浸渍法制备Ni_aCu_b(ZrCeO_4)_8O_x催化剂;用X射线衍射技术(XRD),程序升温还原(H_2-TPR)技术对催化剂的物相结构和还原特性进行表征;研究了催化剂对CO水煤气变换反应的活性与选择性,考察了催化剂组成对CO水煤气变换反应的影响。实验结果表明:Cu_aFe_b(Zr Ce_4)_8O_x具有稳定的立方晶相结构,催化剂对水煤气变换反应表现了良好的活性;载体表面的铜镍物种间存在相互作用,Ni0为甲烷化反应的活性中心;在400℃下,以(Ni_6Cu_4)(Zr Ce_4)_8O_x催化CO水煤气变换反应,CO转化率达到95.42%,甲烷的产率为5.22%;550℃下使用该催化剂时,也未出现明显失活。  相似文献   

12.
采用机械球磨法制备NiMo催化剂,通过XRD、XPS等表征其结构,探究Ni/(Ni+Mo)比对催化剂组成和结构及菲加氢性能的影响。结果表明,该法制备的催化剂活性组分Ni和Mo的分散性好,为孔径集中分布于2-10 nm的介孔催化剂。随Ni/(Ni+Mo)比增加,催化剂的比表面积和MoIV含量呈现出先增加后降低趋势,均于0.33处达到最高。适量Ni促进Mo硫化形成NiMoS活性相,过量的Ni会形成Nix Sy,覆盖活性位点,降低加氢活性。恒定Ni/(Ni+Mo)比为0.33,催化剂的比表面积随Ni、Mo含量增加明显降低,而MoIV含量增加。增加硫化剂硫代硫酸铵(ATS)的用量,可同时提高催化剂的比表面积和MoIV的含量。Ni/(Ni+Mo)比对菲转化率的影响表现出与催化剂中MoIV含量相一致的变化趋势,当Ni/(Ni+Mo)比为0.33时,菲转化率达最高值74.7%。在该比例下,Ni、Mo含量及S/Mo比分别增至4.8%、16%和4.5时,菲的转化率达96.5%,八氢菲和全氢菲的总选择性和产率分别为83...  相似文献   

13.
宋华  代敏  宋华林 《化学进展》2012,(5):757-768
环境法规对硫氧化物脱出的限制日益严格以及原油品质的不断下降,使得有必要研发高效的加氢脱硫催化剂。Ni2P由于具有优异的加氢脱硫活性和稳定性,引起了广泛的关注。本文综述了Ni2P加氢脱硫催化剂的特性、反应活性相、制备方法、改进和加氢脱硫活性等方面的研究进展。在Ni2P中存在两种不同的初始活性位,四面体几何构型的Ni(1)初始活性位在加氢脱硫反应中参与直接脱硫反应,四方锥几何构型的Ni(2)初始活性位则与催化剂的高加氢活性有关。在加氢脱硫反应中,催化剂表面生成的NixSyP相被认为是真正的活性相。制备Ni2P的方法主要是程序升温还原和液相合成。载体、助剂和络合剂对Ni2P活性相的形成和催化剂的活性有重要影响。相比于商用硫化物催化剂,Ni2P催化剂对噻吩、二苯并噻吩和4,6-二甲基二苯并噻吩均表现出更高的加氢脱硫活性。  相似文献   

14.
本文研究以DX-30活性炭为载体的镍-铝催化剂制备因素对煤液化油的加氢脱硫脱氮反应的影响。实验结果表明,所制备的催化剂对加氢脱硫脱氮有很好的活性,在选定的实验条件下,脱硫率达到99.8%,脱氮率达63.2%,均高于以氧化铝、二氧化硅为载体的石油精制商品催化剂。研究发现,催化剂活性组份的浸渍顺序,含量、Ni/(Ni+Mo)原子比、催化剂焙烧温度、孔径分布等因素均影响催化剂的脱硫脱氮活性。在制备催化剂时,当先浸镍后浸钼,NiO-MoO_3涂量为35%,Ni/(Ni+Mo)原子比为0.29,焙烧温度为400℃时,催化剂的脱硫脱氮活性最高。实验中采用脉冲色谱法,以有特征集团的试剂分子为吸附质,测定了不同方法制备的催化剂表面酸碱中心集团的数目及分布情况。随催化剂制备方法的不同,催化剂表面酸碱中心数目及分布情况有很大差别。催化剂表面L酸中心有利于脱硫脱氮。  相似文献   

15.
通过对Cu(111)与Cu(110)晶面上水煤气变换反应中基元步骤动力学参数的计算及表面氧化还原机理的Monte Carlo模拟,发现该反应为结构敏感反应,其表观活化能强烈地依赖于催化剂的表面结构,从而在一定程度上从分子水平阐明了催化剂表面结构对反应活性的影响.  相似文献   

16.
利用等体积浸渍法制备了Fe-Co、Fe-Ni、Mo-Co、Mo-Ni双金属催化剂(总金属含量均为10%(w,质量分数),双金属摩尔比均为1:1),考察了其在等离子体条件下氨分解活性,结果表明Fe-Ni双金属催化剂表现出较好的协同作用。在此基础上,进一步考察了Fe/Ni摩尔比对其活性的影响。结果表明:当Fe/Ni摩尔比为6/4时,氨分解活性最好,而且该双金属催化剂稳定性良好。采用N_2物理吸附、X射线衍射(XRD)、H_2-程序升温还原(H_2-TPR)和高分辨透射电子显微镜(HRTEM)对催化剂的物化性质、还原性能、微观形貌等进行了研究。结果表明:活性较好的Fe-Ni双金属催化剂中,Fe与Ni形成尖晶石结构NiFe_2O_4,该结构有利于Fe和Ni的还原,即活性组分易恢复金属态,这可能是其活性较高的原因。  相似文献   

17.
采用热沉淀法制备了纳米级(粒径在15~30nm)非负载Ni(Co)-Mo-Al2O3催化剂,并用BET、XRD、SEM、TEM等技术对催化剂进行了表征;并以乙酸为探针分子,在连续流动固定床反应器上评价了催化剂的加氢脱氧活性,考察了Ni、Co活性组分、焙烧温度对催化剂的晶态结构及催化性能的影响.结果表明:在考察的反应条件下,Ni、Co活性组分加入后,使Mo-Al2O3催化剂的活性明显提高;而且Ni-Mo-Al2O3催化剂的加氢脱氧活性明显高于Co-Mo-Al2O3催化剂的活性;焙烧温度由500℃升高到550℃时,催化剂的比表面积增大,晶化度提高,催化剂的活性提高.  相似文献   

18.
合成了一种具有超支化结构的新型水杨醛亚胺配体及其Ni(Ⅱ)配合物, 利用元素分析、 电喷雾电离质谱(ESI-MS)、 傅里叶变换红外光谱(FTIR)、 紫外-可见光谱(UV-Vis)、 氢核磁共振谱(1H NMR)和碳核磁共振谱(13C NMR)对其结构进行了表征. 以甲基铝氧烷(MAO)为助催化剂, 考察了超支化水杨醛亚胺镍配合物对乙烯齐聚反应的催化活性及聚合条件(Al/Ni摩尔比、 聚合温度)对催化剂活性及聚合产物分布的影响. 结果表明, 在反应温度为25 ℃、 Al/Ni摩尔比为500时, 该催化剂的活性最高达到5.59×105 g/(mol Ni·h), 得到的聚合产物为全馏分烯烃, 其中高碳烯烃C10~C18的含量最高达91%.  相似文献   

19.
Ni2P/SBA-15催化剂的结构及加氢脱硫性能   总被引:7,自引:1,他引:6  
以硝酸镍为镍源,磷酸氢二铵为磷源,介孔分子筛SBA-15为载体,用共浸渍法制备了含磷化镍前驱体的样品,然后在氢气流中采用程序升温还原法,制备了Ni2P质量分数为5%-40%的Ni2P/SBA-15催化剂.用X射线衍射(XRD)、N2吸附脱附、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)等分析测试技术对催化剂的结构进行了表征,以噻吩和二苯并噻吩(DBT)为模型化合物,在微型同定床反应器上对催化剂的加氧脱硫(HDS)性能进行了评价.结果表明,Ni2P/SBA-15催化剂中SBA-15的介孔结构依然存在,活性组分Ni2P具有良好的分散性,但随Ni2P含量的增加,催化剂的比表面积、孔容和孔径均有明显减小.当反应温度为320℃时,Ni2P含量为15%-25%(w)的催化剂就具有很好的加氢脱硫催化性能;反应温度在360℃以上时,所有催化剂都具有优异的深度脱硫催化性能.Ni2P/SBA-15催化剂对二苯并噻吩的加氢脱硫(HDS)主要以直接脱硫机理(DDS)进行.  相似文献   

20.
以硝酸镍为镍源, 磷酸氢二铵为磷源, 介孔分子筛SBA-15为载体, 用共浸渍法制备了含磷化镍前驱体的样品, 然后在氢气流中采用程序升温还原法, 制备了Ni2P质量分数为5%-40%的Ni2P/SBA-15催化剂. 用X射线衍射(XRD)、N2吸附脱附、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)等分析测试技术对催化剂的结构进行了表征, 以噻吩和二苯并噻吩(DBT)为模型化合物, 在微型固定床反应器上对催化剂的加氢脱硫(HDS)性能进行了评价. 结果表明, Ni2P/SBA-15催化剂中SBA-15 的介孔结构依然存在, 活性组分Ni2P具有良好的分散性, 但随Ni2P含量的增加, 催化剂的比表面积、孔容和孔径均有明显减小. 当反应温度为320 ℃时, Ni2P含量为15%-25%(w)的催化剂就具有很好的加氢脱硫催化性能; 反应温度在360 ℃以上时, 所有催化剂都具有优异的深度脱硫催化性能. Ni2P/SBA-15催化剂对二苯并噻吩的加氢脱硫(HDS)主要以直接脱硫机理(DDS)进行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号