首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last 10 years or so we have witnessed an enormous growth of interest and applications of surfactant-based ordered media in analytical chemistry. However, their use in analytical atomic spectroscopy (AAS) has been rather scarce and often controversial. The utilization of surfactants in this latter field is discussed here along two main lines: one refers to the favourable manipulation of physical properties of the sample solutions (Part A) while the other, demonstrated very recently, refers to the adequate manipulation of chemical reactions and/or interactions of analytes in solution by resorting to surfactants use (Part B). The control of physical properties of sample solutions, e.g. manipulation of the surface tension, allows three main applications of surfactants in atomic methods: possible increases of nebulization/atomization efficiencies in flame-AAS, improvement of aqueous/organic solvent compatibility (emulsification applications) and enhancement of the wettability of graphitic solid surfaces. The facts and controversies existing today on this method of utilization of surfactants to enhance atomic methodologies is critically discussed. The ability of surfactant-based "ordered media" to organize reactants at the molecular level has also been applied to enhance chemical generation of volatile species (e.g. hydride generation or cold Hg vapour generation) used in atomic methods. The analytical potential and usefulness of micelles and vesicles to improve the detection power of hydride generation ICP-AES methodologies are summarized for the determination of arsenic, lead and cadmium by plasma emission. Increases up to two-fold in the sensitivity of As and Pb have been observed by addition of organized media. A volatile Cd species is formed very easily in cationic vesicles with NaBH(4). This Cd species can be used to increase by five times the detectability of Cd by ICP-AES. Moreover, synergic combinations of liquid chromatography separations/atomic detection are possible by resorting to the use of micellar or vesicular mobile phases. The successful application of this principle to the modern problem of toxic arsenic HPLC speciation by using a vesicular solution [as mobile phase for the HPLC separation of As(III), As(V), monomethylarsonic and dimethylarsinic acids] and "on-line" surfactant-enhanced arsine generation is also described in detail and completes the whole picture of the present interface between analytical atomic spectroscopy and surfactant assemblies.  相似文献   

2.
Hydrophilic interaction chromatography (HILIC) is valuable alternative to reversed-phase liquid chromatography separations of polar, weakly acidic or basic samples. In principle, this separation mode can be characterized as normal-phase chromatography on polar columns in aqueous-organic mobile phases rich in organic solvents (usually acetonitrile). Highly organic HILIC mobile phases usually enhance ionization in the electrospray ion source of a mass spectrometer, in comparison to mobile phases with higher concentrations of water generally used in reversed-phase (RP) LC separations of polar or ionic compounds, which is another reason for increasing popularity of this technique. Various columns can be used in the HILIC mode for separations of peptides, proteins, oligosaccharides, drugs, metabolites and various natural compounds: bare silica gel, silica-based amino-, amido-, cyano-, carbamate-, diol-, polyol-, zwitterionic sulfobetaine, or poly(2-sulphoethyl aspartamide) and other polar stationary phases chemically bonded on silica gel support, but also ion exchangers or zwitterionic materials showing combined HILIC-ion interaction retention mechanism. Some stationary phases are designed to enhance the mixed-mode retention character. Many polar columns show some contributions of reversed phase (hydrophobic) separation mechanism, depending on the composition of the mobile phase, which can be tuned to suit specific separation problems. Because the separation selectivity in the HILIC mode is complementary to that in reversed-phase and other modes, combinations of the HILIC, RP and other systems are attractive for two-dimensional applications. This review deals with recent advances in the development of HILIC phase separation systems with special attention to the properties of stationary phases. The effects of the mobile phase, of sample structure and of temperature on separation are addressed, too.  相似文献   

3.
Speciation of selenocysteine (SeCys), selenomethionine (SeMet), selenoethionine (SeET), selenite (Se(IV)) and selenate (Se(VI)) has been accomplished using high-performance liquid chromatography, with the aid of an anion exchange column and a reversed-phase column, both connected through a six-port switching valve. On-line microwave-assisted digestion and hydride generation steps were performed prior to the atomic fluorescence detection. The elution of the seleno amino acids was accomplished in the reversed-phased column using water as mobile phase. Selenite and selenate were separated in the anion exchange column, using gradient elution with an acetate buffer. The separation of the five selenium compounds took place in 15 min. The detection limits obtained ranged between 0.6 and 0.9 microg l(-1). Values of r>0.998 were obtained for linear fit graphs. A commercial available urine sample was analyzed, in which SeCys and Se(IV) were quantified.  相似文献   

4.
Río-Segade S  Bendicho C 《Talanta》1999,48(2):477-484
A reversed-phase high-performance liquid chromatography (HPLC) method with cold vapor atomic absorption spectrometry (CV-AAS) detection is developed for mercury speciation. In this paper, the efficiency of tetrabutylammonium bromide reagent and sodium chloride in a methanol-water mixture as mobile phase is evaluated for HPLC separation of methylmercury and inorganic mercury coupled with on-line CV-AAS determination. Both mercury species are separated on a reversed-phase C(18) column. Several parameters (e.g. composition and flow-rate of mobile phase) are investigated for the optimization of HPLC separations. CV-AAS technique parameters are also studied for their effect on sensitivity (sodium borohydride and sodium hydroxide concentrations in the reducing agent, reducing agent flow-rate, length of the reduction coil and nitrogen flow-rate). Quantitative recoveries for both inorganic mercury and methylmercury are obtained from a spiked natural water sample.  相似文献   

5.
An on-line system for the simultaneous determination of Se(IV), Se(VI) and selenomethionine (Se-Met) in aqueous samples was developed, consisting of separation by ion chromatography, microwave digestion and detection by hydride generation atomic absorption spectrometry. 8.3 mmol/l Na2HPO4 (pH 9.2) was used as mobile phase for the ion chromatography, with a flow-rate of 1.5 ml/min. After the separation the sample was mixed with concentrated KBr-HCl solution and heated with microwave energy to digest Se-Met and reduce Se(VI) to Se(IV). The detection limits were 15 g/l, 12 g/l and 103 g/l for Se(IV), Se(VI) and Se-Met, respectively.  相似文献   

6.
The use of silica hydride-based stationary phases for the retention and analysis of nucleotides has been investigated. Both reversed-phase columns with a hydride surface underneath as well as those with an unmodified or a minimally modified hydride material were tested. With these systems, an aqueous normal-phase mode was used with high organic content mobile phases in combination with an additive to control pH for the retention of the hydrophilic nucleotides. Isocratic and gradient elution formats have been used to optimize separations for mixtures containing up to seven components. All conditions developed are suitable for methods that utilize mass spectrometry detection.  相似文献   

7.
A novel High Performance Liquid Chromatography (HPLC) method for the separation of selenium species with specific detection by off-line Electrothermal Atomization Atomic Absorption Spectrometry (ETAAS) or on-line focused microwave digestion (MW) Hydride Generation Atomic Absorption Spectrometry (HG-AAS) is described. Vesicular mobile phases of the cationic surfactant didodecyldimethylammonium bromide (DDAB) have been evaluated for the liquid chromatographic separation of inorganic selenium (selenite and selenate) and different selenoaminoacids (selenocystine, selenomethionine and selenoethionine) on a C(18) reversed-phase column modified by DDAB molecules. The effects of different parameters (pH, buffer and vesicle concentrations) of the mobile phase on the retention times have been determined. The detection limit for selenium with the proposed off-line HPLC-ETAAS method has been found to be 5 microg/L of Se. The detection limit using HPLC-"on line" focused microwave digestion-HG-AAS has been found to be 1 microg/L of Se, with a precision (repeatability) better than +/- 5%. The latter proved to be an exceptional on-line real-time chromatographic detector for selenium speciation purposes.  相似文献   

8.
Interferences of selected hydride forming elements (As, Sb, Bi, Se and Sn) on lead determination by hydride generation atomic absorption spectrometry were extensively studied in both on-line atomization and preconcentration (collection) modes. The commonly used on-line atomization mode was found free of significant interferences, whereas strong interference from Bi was observed when employing the preconcentration mode with plumbane collection in a quartz trap-and-atomizer device. Interference of Bi seems to take place in the preconcentration step. Interference of Bi in the collection mode cannot be reduced by increased hydrogen radical amount in the trap and/or the atomizer.  相似文献   

9.
A comparison of chiral separation and analysis of selenomethionine in breast and formula milk, using high performance liquid chromatography (HPLC) on a glycopeptide teicoplanin-based chiral stationary phase (Chirobiotic T), coupled to atomic fluorescence spectrometry (AFS) and inductively coupled plasma (ICP) MS detectors has been performed. The coupling HPLC-microwave-assisted digestion hydride generation requires on-line post-column analytes treatment, and a severe sample clean-up for fat and proteins elimination using centrifugation and ultrafiltration. Underivatized -selenomethionine enantiomers were completely resolved in 10 min using unbuffered water mobile phase at 1 ml min−1 flow. Good selectivity and sensitivities (detection limits 3.1 and 3.5 ng ml−1 as Se for - and -selenomethionine, respectively) were obtained, and method robustness and simplicity, together to the low cost of AFS detector, makes it suitable for infant milk routine analysis. HPLC–ICP-MS coupling exhibits very low detection limits (0.9 ng ml−1, as Se) for each -selenomethionine enantiomers, but the method suffers from matrix influence, that produces a poor S/N ratio and low reliability.

The methods were applied to breast and formula milk samples with recoveries of 80% of the total selenium presence, which is attributable to the existence of other unknown species. -Selenomethionine was the only isomer present in breast milk, but a 30% of -selenomethionine was also detected in formula milk.  相似文献   


10.
Cationic, anionic, and nonionic surfactants are characterized for their usefulness as micellar mobile phases in reversed-phase chromatography. Conditions found previously to provide optimum chromatographic efficiency for sodium dodecyl sulfate also provide high efficiency for the cationic and nonionic surfactants studied. The use of 3% n-propanol in the micellar mobile phase and column temperatures of 40°C appear to offer a broadly applicable solution to the low efficiency previously reported for micellar mobile phases. A chromatographic method for the determination of critical micelle concentrations is reported; it compares favorably with literature methods. Micellar mobile phases are shown to mimic ion-pairing mobile phases, allowing the separation of neutral solutes as well as solutes charged oppositely to the surfactant and offer a more rugged method of analysis than hydro-organic ion-pairing methods.  相似文献   

11.
A method was proposed for the determination of zinc by atomic fluorescence spectrometry with hydride generation from surfactant-based organized media. The ability of different nature micelles to improve hydride generation of zinc was investigated using an intermittent flow hydride generator and the possible mechanism was discussed. The advantages of hydride generation from the organized media of cetyltrimethylammonium bromide (CTAB) were contrasted with that from aqueous media in sensitivity and precision of the zinc determination. The micellar media of CTAB improved the hydride generation processes of zinc both thermodynamically and kinetically. In addition some transition metals, presumably metal borides, were found to catalyze the hydrogenation of zinc. The proposed method has been validated by the determination of zinc in the certified reference materials using the standard addition method with satisfactory result.  相似文献   

12.
An ion-pair reversed-phase HPLC method was evaluated for the separation of synthetic oligonucleotides. Mass transfer in the stationary phase was found to be a major factor contributing to peak broadening on porous C18 stationary phases. A small sorbent particle size (2.5 microm), elevated temperature and a relatively slow flow-rate were utilized to enhance mass transfer. A short 50 mm column allows for an efficient separation up to 30mer oligonucleotides. The separation strategy consists of a shallow linear gradient of organic modifier, optimal initial gradient strength, and the use of an ion-pairing buffer. The triethylammonium acetate ion-pairing mobile phases have been traditionally used for oligonucleotide separations with good result. However, the oligonucleotide retention is affected by its nucleotide composition. We developed a mathematical model for the prediction of oligonucleotide retention from sequence and length. We used the model successfully to select the optimal initial gradient strength for fast HPLC purification of synthetic oligonucleotides. We also utilized ion-pairing mobile phases comprised of triethylamine (TEA) buffered by hexafluoroisopropanol (HFIP). The TEA-HFIP aqueous buffers are useful for a highly efficient and less sequence-dependent separation of heterooligonucleotides.  相似文献   

13.
A detailed comparison of the performance of inductively coupled plasma mass spectrometry (ICP-MS), with quadrupole and double-focusing instruments for the speciation of selenium in urine has been carried out. Selenium sensitivity about 23-59 times higher with double-focusing ICP-MS detection was observed, but limits of detection were only 1-8.7 times better because of background noise. Selenium species separation has been carried out by both reversed-phase and vesicle-mediated high-performance liquid chromatography (HPLC), coupled on-line with the detector via conventional nebulization and via on-line focused microwave digestion-hydride generation. A remarkable improvement in sensitivity (28-110 times better for (77)Se depending on the chromatographic system) and elimination of interference problems from the urinary matrix or the components of the mobile phases were achieved when an on-line microwave digestion-hydride generation interface was used, but the background noise was much higher than with conventional nebulization. Therefore, the limits of detection were not as low as expected from such improvement in the sensitivity. More selenocompounds can be separated, and a slight improvement in the sensitivity and limits of detection was obtained when the vesicle-mediated HPLC system was used as compared with reverse-phase chromatography. However, the use of several complementary chromatographic systems, such as reverse-phase HPLC, is recommended to bring some light on the selenocompounds present in basal human urine. Comparative data of rat urine speciation are also given.  相似文献   

14.
A procedure was developed for the group and individual identification of five priority nonionic surfactants and one amphoteric surfactant in raw materials and finished detergents with the use of UV spectrometry, thin-layer chromatography, high-performance liquid chromatography (HPLC) with diode array and refractometric detectors, and solid-phase extraction on an ion-exchange sorbent. A procedure was developed for the determination of these surfactants. The effect of the composition of the organic part of the mobile phase in reversed-phase HPLC on the C18 sorbent with refractometric detection was examined. It was demonstrated that the use of a three-component acetonitrile-methanol-water mobile phase improved the selectivity of the separation of surfactants in comparison with binary acetonitrile-water and methanol-water mixtures.  相似文献   

15.
A review is presented of the use of fluorinated phases and fluorine-containing surfactants in chromatography. Additionally, new information is provided on the application of two nonionic perfluorosurfactants as reversed-phase mobile phase additives to enhance chromatographic performance of aromatic amines and some amines of pharmaceutical significance.  相似文献   

16.
The dominant role played by flow injection/sequential injection (FI/SI, including lab-on-valve, LOV) in automatic on-line sample pretreatments coupling to various detection techniques is amply demonstrated by the large number of publications it has given rise to. Among these, its hyphenation with hydride/vapor generation atomic fluorescence spectrometry (HG/VG-AFS) has become one of the most attractive sub-branches during the last years, attributed not only to the high sensitivity of this technique, but also to the superb separation capability of hydride/vapor forming elements from complex sample matrices. In addition, it also provides potentials for the speciation of the elements of interest.It is worth mentioning that quite a few novel developments of sample pretreatment have emerged recently, which attracted extensive attentions from the related fields of research. The aim of this mini-review is thus to illustrate the state-of-the-art progress of implementing flow injection/sequential injection and miniaturized lab-on-valve systems for on-line hydride/vapor generation separation and preconcentration of vapor forming elements followed with detection by atomic fluorescence spectrometry, within the period from 2004 up to now. Future perspectives in this field are also discussed.  相似文献   

17.
A method for the selective detection and quantification of peptide:oligonucleotide heteroconjugates, such as those generated by protein:nucleic acid cross-links, using capillary reversed-phase high performance liquid chromatography (cap-RPHPLC) coupled with inductively coupled plasma mass spectrometry detection (ICPMS) is described. The selective detection of phosphorus as 31P+, the only natural isotope, in peptide-oligonucleotide heteroconjugates is enabled by the elemental detection capabilities of the ICPMS. Mobile phase conditions that allow separation of heteroconjugates while maintaining ICPMS compatibility were investigated. We found that trifluoroacetic acid (TFA) mobile phases, used in conventional peptide separations, and hexafluoroisopropanol/triethylamine (HFIP/TEA) mobile phases, used in conventional oligonucleotide separations, both are compatible with ICPMS and enable heteroconjugate separation. The TFA-based separations yielded limits of detection (LOD) of ~40 ppb phosphorus, which is nearly seven times lower than the LOD for HFIP/TEA-based separations. Using the TFA mobile phase, 1–2 pmol of a model heteroconjugate were routinely separated and detected by this optimized capLC-ICPMS method.  相似文献   

18.
万古霉素作为一种大环抗生素,具有复杂的分子结构。在充分考虑万古霉素分子结构特征的情况下,采用戊二醛间隔臂法制备了万古霉素键合固定相,在反相、亲水、离子交换等分离模式下研究了其色谱分离性能。结果表明,当流动相中有机调节剂含量较低时,该色谱柱表现出典型的反相色谱分离模式特征;随着有机调节剂含量的增加,逐渐转变成亲水模式,分离特性发生明显改变。由于万古霉素分子结构中含有可以解离的氨基,因此该固定相也能够用于阴离子交换模式下的分析方法的发展。分别在反相、亲水和阴离子交换模式下,将其应用于扑尔敏等多种非对映体药物和新型甜味剂甜菊糖的高效液相色谱分离;仅通过改变分离条件,即可在3种不同分离模式下完成分离。这些结果可以为新型色谱固定相的设计,以及发展采用特殊结构改性基团的色谱固定相在相应分离模式下的分析方法提供指导。  相似文献   

19.
Hydrophilic interaction chromatography (HILIC) is becoming increasingly popular for separation of polar samples on polar columns in aqueous-organic mobile phases rich in organic solvents (usually ACN). Silica gel with decreased surface concentration of silanol groups, or with chemically bonded amino-, amido-, cyano-, carbamate-, diol-, polyol-, or zwitterionic sulfobetaine ligands are used as the stationary phases for HILIC separations, in addition to the original poly(2-sulphoethyl aspartamide) strong cation-exchange HILIC material. The type of the stationary and the composition of the mobile phase play important roles in the mixed-mode HILIC retention mechanism and can be flexibly tuned to suit specific separation problems. Because of excellent mobile phase compatibility and complementary selectivity to RP chromatography, HILIC is ideally suited for highly orthogonal 2-D LC-LC separations of complex samples containing polar compounds, such as peptides, proteins, oligosaccharides, drugs, metabolites and natural compounds. This review attempts to present an overview of the HILIC separation systems, possibilities for their characterization and emerging HILIC applications in 2-D off-line and on-line LC-LC separations of various samples, in combination with RP and other separation modes.  相似文献   

20.
C Yang  Z El Rassi 《Electrophoresis》1999,20(12):2337-2342
Capillary electrochromatography (CEC) was introduced to the separation of nine important urea herbicides using octadecyl-silica (ODS) capillary columns that were specially designed to allow the realization of a relatively strong electroosmotic flow (EOF) and, in turn, fast separations. The ODS stationary phase was intentionally prepared to have a low surface coverage in octadecyl ligands in order to ensure a strong EOF. This ODS stationary phase of low surface coverage exhibited the usual reversed-phase chromatographic behavior as was manifested by the linearity of plots of log kappa versus the percent organic modifier in the mobile phase. The nature of the organic modifier of the mobile phase influenced the order of elution as well as the separation efficiency of the nine urea herbicides. Mobile phases containing acetonitrile yielded higher separation efficiency (by a factor of 1.5) than methanol-containing mobile phases. This was attributed to the higher mass transfer resistances of the solute in and out of the pores in the presence of the more viscous methanol-containing mobile phases. Due to the relatively strong affinity of the urea herbicides to the ODS stationary phase, on-line preconcentration consisting of prolonged injections allowed the determination of 10(-5) M urea herbicide samples using a UV detector without sacrificing separation efficiency. This was further decreased to 10(-7) M when the prolonged injection was preceded by the injection of a plug of water. The plug of water (the more retentive mobile phase) brought about an enhanced accumulation of the dilute samples into a narrow band at the inlet of the CEC column. When this on-column sample enrichment approach was combined with an off-line sample preconcentration step, which consisted of a solid-phase extraction process, ultra dilute samples of 10(-10) M (0.1 ppb) could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号