首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fluid Phase Equilibria》2004,224(1):143-154
Homogeneous catalysts offer better activity and selectivity than heterogeneous catalysts, but their use is limited by the need to separate them from product and reuse them. Preferential dissolution of gaseous carbon dioxide has been shown to alter phase boundaries and facilitate recovery of such homogenous catalysts. The addition of a polar organic co-solvent to a water/organic biphasic system, coupled with subsequent phase splitting induced by the dissolution of gaseous carbon dioxide creates the opportunity to run homogeneous reactions in an organic/aqueous mixture with a water-soluble catalyst. In homogeneous catalyzed reactions, the catalyst can be tuned to be soluble or insoluble with carbon dioxide present, thus allowing for high catalyst recovery.High-pressure phase equilibria for the systems containing carbon dioxide, an organic (tetrahydrofuran, acetonitrile, or 1,4-dioxane), and water were measured using a variable-volume view cell, by a method capable of rapid and facile measurement of compositions and density in both phases with no sampling or calibration. These systems are well predicted with the Peng–Robinson Equation of State with Huron–Vidal type mixing rules from correlations of the binary systems, with the modified Huron–Vidal 1 (MHV1) and Huron–Vidal–Orbey–Sandler (HVOS) model with UNIQUAC excess energy model performing the best. Applications of the phase behavior on reaction conditions and separations are addressed.  相似文献   

2.
《Fluid Phase Equilibria》2002,198(2):229-237
In this work, we report vapor–liquid equilibrium data for the systems carbon dioxide (CO2)/iso-butanol and CO2/iso-pentanol at 288.2, 303.2 and 313.2 K, and for pressures up to the critical point. The interaction parameters for the Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) equations of state (EOS) that best fit the experimental results are also given.  相似文献   

3.
The aim of this work is to report phase equilibrium data for the binary systems (CO2 + α-humulene) and (CO2 + trans-caryophyllene), and for the ternary system (CO2 + α-humulene + trans-caryophyllene). Results from literature show that α-humulene and trans-caryophyllene are the main compounds responsible for the anti-inflammatory and anti-allergic characteristics attributed to the medicinal plant Cordia verbenacea D.C., hence giving importance to the phase behaviour investigation performed in this work. Phase equilibrium experiments were performed in a high-pressure, variable-volume view cell over the temperature range of T = (303 to 343) K and pressures up to 20 MPa. (Liquid + liquid) and (vapour + liquid + liquid) equilibrium were observed at T = 303 K, while (vapour + liquid) phase transitions were verified to occur from T = (313 to 343) K, for all systems studied. Thermodynamic modelling was performed using the Peng–Robinson equation of state and the classical quadratic mixing rules, with a satisfactory agreement between experimental and calculated values.  相似文献   

4.
《Fluid Phase Equilibria》1999,155(1):95-105
Liquid–liquid equilibrium phase diagrams for two binary systems: water+1-pentanol and water+2-methyl-2-butanol and two ternary systems: water+1-pentanol+2-butyloxyethanol and water+2-methyl-2-butanol+2-butyloxyethanol at 20°C and 30°C are presented in this paper. The experimental results were correlated with the UNIQUAC model by fitting the effective UNIQUAC binary interaction parameters as a function of temperature. Agreement between the calculated and experimental data was very good.  相似文献   

5.
《Fluid Phase Equilibria》1999,163(1):119-126
Liquid and vapor densities for carbon dioxide+linalool, and carbon dioxide+limonene were measured by using a system consisting of two vibrating tube densimeters. The PTxy diagrams and saturated liquid and vapor densities for these two binary mixtures were determined at 313, 323 and 333 K, respectively, as well as at pressures up to 11 MPa. The density of the saturated CO2 phase increased with increasing pressure. At higher pressure, the density of the liquid phase decreased with increasing pressure, corresponding to an increasing amount of carbon dioxide.  相似文献   

6.
《Fluid Phase Equilibria》2002,202(1):153-218
As a continuation of an earlier review, a compilation of systems for which high-pressure phase equilibrium data have been published between 1994 and 1999 is given. Vapor–liquid equilibria (VLE), liquid–liquid equilibria (LLE), vapor–liquid–liquid equilibria (VLLE), solid–liquid equilibria, solid–vapor equilibria, solid–vapor–liquid equilibria, critical points, the solubility of high-boiling substances in supercritical fluids and the solubility of gases in liquids (GLE) are included. For the systems investigated, the reference, the temperature and pressure range of the data, and the experimental method used for the measurements is given in 39 tables. Most of experimental data in the literature has been given for binary systems. Of the 824 binary systems, 350 have carbon dioxide as one of the components. Information on 135 pure components, 337 ternary systems and 120 multicomponent systems is given. Experimental methods for the investigation of high-pressure phase equilibria are classified and described.  相似文献   

7.
A recently built experimental setup was employed for the estimation of the solid–liquid equilibria of alternative refrigerants systems. The behavior of dimethyl ether (DME) + carbon dioxide was measured down to temperatures of 131.6 K. To confirm the reliability of the apparatus, the triple point of the DME was measured. The triple point data measured revealed a good consistency with the literature. The results obtained for the mixtures were corrected by the Rossini method and interpreted by means of the Schröder equation.  相似文献   

8.
《Fluid Phase Equilibria》2004,224(1):111-118
The statistical associating fluid theory (SAFT) equation of state is employed for the correlation and prediction of vapor–liquid equilibrium (VLE) of eighteen binary mixtures. These include water with methane, ethane, propane, butane, propylene, carbon dioxide, methanol, ethanol and ethylene glycol (EG), ethanol with ethane, propane, butane and propylene, methanol with methane, ethane and carbon dioxide and finally EG with methane and ethane. Moreover, vapor–liquid equilibrium for nine ternary systems was predicted. The systems are water/ethanol/alkane (ethane, propane, butane), water/ethanol/propylene, water/methanol/carbon dioxide, water/methanol/methane, water/methanol/ethane, water/EG/methane and water/EG/ethane. The results were found to be in satisfactory agreement with the experimental data except for the water/methanol/methane system for which the root mean square deviations for pressure were 60–68% when the methanol concentration in the liquid phase was 60 wt.%.  相似文献   

9.
《Fluid Phase Equilibria》1999,155(2):229-239
Isobaric vapor–liquid equilibria (VLE) have been obtained for the systems trichloroethylene+1-pentanol, trichloroethylene+2-methyl-1-butanol and trichloroethylene+3-methyl-1-butanol at 100 kPa using a dynamic still. The experimental error in temperature is ±0.1 K, in pressure ±0.1 kPa, and in the liquid and vapor mole fraction ±0.001. The three systems satisfy the point-to-point thermodynamic consistency test. All the systems show positive deviations from ideality. The data have been correlated with the Margules, van Laar, Wilson, NRTL and UNIQUAC equations.  相似文献   

10.
《Fluid Phase Equilibria》1988,41(3):257-267
Vapour—liquid equilibria in the title systems were measured isothermally at 75, 85 and 95 °C. Both the systems exhibit azeotropic behaviour in region of high concentration of alcohol. The densities of liquid mixtures were determined at 25 °C. Only the non-classical equations (Wilson, NRTL) correlate the data within the accuracy of experimental errors.  相似文献   

11.
Isobaric vapour–liquid equilibrium (VLE) measurements for the binary systems 4-methyl-2-pentanone + 1-butanol and 4-methyl-2-pentanone + 2-butanol are reported at 20 and 101.3 kPa. The system 4-methyl-2-pentanone + 1-butanol presents a minimum boiling point azeotrope at both pressures (20 and 101.3 kPa) and the system 4-methyl-2-pentanone + 2-butanol presents only a minimum boiling azeotrope at 20 kPa. In both systems, which deviate positively from ideal behaviour, the azeotropic composition is strongly dependent on pressure. The activity coefficients and boiling points of the solutions were correlated with its composition by the Wilson, UNIQUAC, and NRTL models for which the parameters are reported.  相似文献   

12.
Abstract

The phase equilibria in phosphatidylcholine (PC)-n-alkane-2H2O systems have been studied to elucidate the driving forces for the transition between a lamellar liquid-crystalline (L α) phase and a reversed hexagonal (H II) phase. A tentative phase diagram for the system dioleoyl-PC (DOPC)-n-dodecane-2H2O was determined. DOPC forms an L α phase up to at least 90°C in excess water. However, an H II phase was formed at room temperature at both low and high water concentrations in DOPC-n-dodecane-2H2O mixtures. The phase equilibria were also studied in PC-n-dodecane-2H2O systems containing PC with different degrees of acyl chain unsaturation. The water and dodecane concentrations required to induce the formation of an H II (or isotropic) phase increase in the order dilinoleoyl-PC ~ DOPC < 1-palmitoyl-2-oleoyl-PC < dipalmitoyl-PC. The effect of n-alkanes with different chain lengths (C8–C20) on the phase equilibria in DOPC-n-alkane-2H2O mixtures was studied. Although the number of alkane carbon atoms added per DOPC molecule was kept constant, the ability of the alkanes to promote the formation of an H II phase was strongly chain length dependent; the ability decreased when going from octane to eicosane. Finally, some PC-peptide-2H2O systems were investigated. Gramicidin (hydrophobic) had a similar influence on the phase equilibria as the alkanes. Melittin (amphiphilic) induced the formation of an isotropic phase, while insulin and duramycin (water soluble) had no, or a very limited, ability to induce a non-lamellar phase, respectively. Our results are discussed in the light of simple physical models dealing with the self-assembly of amphiphiles.  相似文献   

13.
《Fluid Phase Equilibria》1999,157(1):53-79
Phase equilibria in binary and ternary systems containing o-cresol, p-cresol, carbon dioxide, and ethanol have been investigated experimentally at temperatures between 323.15 K and 473.15 K and pressures ranging from 10 MPa to 35 MPa. The experimental results provide a systematic basis of phase equilibrium data, yielding the effect of temperature on the influence of the position of the methyl groups of cresols that are in phase equilibria with carbon dioxide. Based on the different solubilities of the cresol isomers in carbon dioxide, the separation of o-cresol and p-cresol was investigated. The dependence of the separation factor between both cresol isomers on concentration, temperature, and pressure is obtained from experiments in the ternary system, o-cresol+p-cresol+carbon dioxide. The influence of ethanol added to each of the binary systems, cresol isomer+carbon dioxide, in order to enhance the solubility of the cresols in the carbon dioxide-rich phase is also shown. The experimental data have been correlated using seven different equations of state, whereof four explicitly account for intermolecular association: Statistical Association Fluid Theory (SAFT) by Chapman, Gubbins, Huang and Radosz, the SAFT modification by Pfohl and Brunner for near-critical fluids, a modified cubic-plus-association equation of state (CPA EOS) according to the ideas by Tassios et al., and one of the EOS by Anderko. The mixing rule proposed by Mathias, Klotz, and Prausnitz, with two binary interaction parameters per binary system influencing intermolecular attractive forces, is used for all EOS as a basis for an objective comparison of the EOS.  相似文献   

14.
This work reports on liquid–liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were obtained on the composition of the coexisting phases of a series of ternary and quaternary mixtures of the components at 301, 308 and 313 K. The data were correlated successfully with the UNIQUAC model that was extended with ternary interaction parameters.  相似文献   

15.
This study evaluates the accuracy of estimating data in the series of systems carbon dioxide (1)–fatty acids (2) by two cubic equations of state, namely the EOS of Peng and Robinson in its original form and the recently proposed cubic EOS. The classical mixing rules are implemented in entirely predictive manner, i.e. without binary adjustable parameters. It is demonstrated that both models may yield reliable predictions of the data. However the EOS of Peng and Robinson fails in predicting the topology of phase behavior of the heavy homologues. The second cubic EOS predicts the Global Phase Behavior in the homologous series under consideration satisfactorily accurate, which in particular means qualitatively correct estimation of the liquid–liquid equilibria. The recently proposed EOS has no significant advantage over the EOS of Peng and Robinson in predicting the vapour–liquid equilibria data under consideration.  相似文献   

16.
Experimental vapor–liquid equilibria for the systems carbon dioxide + 1-butanol and carbon dioxide + 2-butanol were obtained from 313 to 363 K via a static-analytic set-up. A vibrating U-tube densitometer was coupled to this apparatus to perform simultaneous measurements of both saturated densities of the vapor and liquid phases. The suitability of this apparatus was checked by comparing the experimental vapor–liquid equilibrium and saturated density results with the literature data. The experimental vapor–liquid equilibrium data were correlated using the Peng–Robinson equation of state coupled to the Wong–Sandler mixing rules with good agreement; however densities using the same model were not satisfactorily represented.  相似文献   

17.
《Fluid Phase Equilibria》1987,32(3):261-271
Compositions and molar volumes of the three phases in liquid—liquid—gas equilibrium are reported for ternary mixtures of isopropanol, water and CO2 at elevated pressures and at temperatures of 50 and 60°C. Phase compositions and molar volumes were also obtained for three-phase, liquid—liquid—liquid equilibrium and four-phase, liquid—liquid—liquid—gas equilibrium at 40°C. Gas—liquid and liquid—liquid critical endpoints, which represent pressure bounds on the liquid—liquid—gas region at 60°C, were determined from observations of critical opalescence.The phase behavior exhibited by the isopropanol—water—CO2 system is quite complex, particularly at conditions near the critical point of CO2. These conditions are well within the range of operating conditions proposed for supercritical-fluid extraction of organic compounds from water using CO2. Therefore, the existence of multiple coexisting phases can be an important factor in designing and operating such extraction processes.  相似文献   

18.
《Fluid Phase Equilibria》2002,202(2):337-344
Liquid–liquid phase equilibria (LLE) for the system of water/tert-butyl alcohol (TBA)/2-ethyl-1-hexanol were investigated experimentally at different temperatures of 298.15, 303.15, 308.15, and 313.15 K. A type 1 liquid–liquid phase diagram was obtained for this ternary system. These results were correlated simultaneously by the UNIQUAC model. The values of the interaction parameters between each pair of components in the system were obtained for the UNIQUAC model using the experimental results. The root mean square deviation (RMSD) between the observed and calculated mole percents was 2.58%. The mutual solubility of 2-ethyl-1-hexanol and water was also investigated by the addition of TBA at different temperatures.  相似文献   

19.
《Fluid Phase Equilibria》1999,157(2):271-283
Liquid–liquid equilibrium data for the partially miscible systems of water+2-butanone+salt and water+ethyl acetate+salt were measured at 298.15 K. The salts used were potassium iodide, sodium bromide and lithium chloride. The systems were compared in terms of salting effect. The three-contribution electrolyte NRTL model is used to perform the data regression of the experimental data. New binary parameters are obtained. The calculated results are compared with the experimental data.  相似文献   

20.
《Fluid Phase Equilibria》2001,178(1-2):239-257
Bubble points of the HCl–water–isopropanol and the HCl–water–isopropanol–benzene systems and liquid–liquid equilibria (LLE) of the HCl–water–benzene and the HCl–water– isopropanol–benzene systems were measured at 25–85°C and 30–70°C, respectively. The electrolyte nonrandom two-liquid model proposed by Chen et al. [C.-C. Chen, H.I. Britt, J.F. Boston, L.B. Evans, AIChE J. 28 (1982) 588–596] can satisfactorily correlate bubble points and liquid–liquid equilibria of the present mixed-solvent electrolyte systems over the entire range of temperature and concentrations using only binary adjustable parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号