首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The film-forming ability of latex blends (hard latex + soft latex) and the mechanical behavior at finite strain of latex blend films (soft matrix with tough inclusions) has been investigated. The maximum weight fraction of hard latex particles (ϕmax) which still gives rise to transparent and crack-free films has been used as film-forming ability criterion. It was shown that when the Tg of the soft latex is low (Tg(soft) < 0°C), ϕmax is constant and equal to 0.55 because the film-forming ability is controlled by contacts between hard particles. Nevertheless, the expected effect of Tg(soft) on film-forming ability is observed (i.e., ϕmax decreases when Tg(soft) increases) when Tg(soft) is above 0°C. From the mechanical behavior point of view, it was shown that the two main parameters controlling the mechanical behavior of latex blend films are: the mechanical properties of the soft polymer because it represents the continuous matrix and the weight fraction of hard latex particles since they enhance the local deformation of matrix under load. However, it was also proven that debounding between the Tg latex particles and low Tg matrix occurs rapidly (at an elongation ratio ≈ 30%) during uniaxial strain experiments and has to be taken into account in order to gain a thorough understanding of the mechanical behavior of these biphasic films. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2093–2101, 1997  相似文献   

2.
Prior studies of inflation of circular membranes of ultrathin polystyrene (PS) films have evidenced a reduced glass transition temperature (Tg) and rubbery stiffening, whose origins remain unclear. Here, we describe results from inflation of rectangular, ultrathin films of the same PS material. The bubble shapes obtained from the experiment are consistent with finite element (FE) simulations. The accuracy of three approximate solutions for modulus obtained from the inflation of the thin, rectangular films was evaluated by comparison with FE analysis. The best among the three solutions was used to determine the creep compliance and rubbery stiffness of the thin films. It is found that the reduction of Tg and the rubbery stiffening for rectangular bubbles are consistent with results obtained using circular bubbles, although there is some indication that the rectangular bubbles give somewhat greater rubbery stiffening. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

3.
Vinyl acetate/(VAc)-butyl acrylate/(BuA) copolymer latex films of various copolymer compositions were investigated for their morphological properties by electron microscopy techniques, and for their mechanical properties by dynamic mechanical spectroscopy (DMS), differential scanning calorimetry (DSC), and tensile strength measurements. Batch copolymer latex films showed domains of PBuA dispersed in PVAc matrix; the domain sizes were increased with increased BuA content. Semicontinuous latex films were homogeneous in composition. Glass transition temperatures Tg determined from DMS and DSC indicated the presence of two, low and high, transition temperatures for batch latex films. The two temperatures approached the individual homopolymers, with increased PBuA content up to 51 mol %. Semicontinuous latex films showed only one single Tg. Tensile properties of the batch copolymer films showed a higher ultimate tensile strength, higher Young's modulus, and lower percent elongation to break compared to semicontinuous latex films. These differences were found to reflect the effect of mode of monomer addition during the emulsion copolymerization process on the particle morphology, and confirmed earlier data on bulk, colloidal, and surface properties of the same copolymer latexes.  相似文献   

4.
Latex films composed of fused polybutadiene (PB) and poly (vinyl pyrrolidone) (PVP) particles that contain no ionic, hydroxyl, or amino groups were swelled with lithium salt solutions to yield new polymer electrolyte materials. The latex particle consists of a nonpolar, rubbery core that contains the PB component and a polar, glassy shell that contains the PVP component. The particle core-shell morphology was retained in the solid state, after the latex dispersion medium was removed and the films dried at high temperatures, due to the high Tg of the PVP shell. The films swelled when immersed in lithium salt solutions, and ionic conductivity of swollen films was greater than 10-3 S/cm. Swelling and ionic conduction occurred only in the polar PVP component. Extraction of PVP occurred with extended swelling. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Molecular composites were prepared from several types of ionically modified, poly(p‐phenylene terephthalamide) (PPTA) dispersed in a poly(4‐vinylpyridine) matrix. Optical clarity tests indicated that the component polymers of the composite were miscible, at least at low concentrations of the rodlike reinforcement. In composites containing ionic PPTA, where ionic sulfonate groups were attached as side groups either to PPTA chains or to PPTA anion chains, the glass‐transition temperature (Tg) was increased by l0 °C or more, at 5 wt % reinforcement. At concentrations of 10–15 wt % of the ionic polymer, Tg values leveled off or decreased slightly. This suggested that some aggregation of the rigid‐rod molecules occurred. In composites containing ionic PPTA, where the ionic sulfonate groups were directly attached to the phenylene rings of PPTA chains, not only was Tg shifted significantly to higher temperatures, but the rubbery plateau modulus retained high values up to temperatures of 250 °C or above. Observed effects were considered to be the result of strong ionic interactions between the ionic reinforcement polymer and the polar matrix polymer. The possible effects of the counterion on Tg and the storage modulus are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1110–1117, 2002  相似文献   

6.
A liquid dewetting method for the determination of the viscoelastic properties of ultrathin polymer films has been extended to study thickness effects on the properties of ultrathin polycarbonate (PC) films. PC films with film thicknesses ranging from 4 to 299 nm were placed on glycerol at temperatures from below the macroscopic glass transition temperature (Tg) to above it with the dewetting responses being monitored. It is found that the isothermal creep results for films of the same thickness, but dewetted at different temperatures can be superposed into one master curve, which is consistent with the fact of PC being a thermorheologically simple material. Furthermore, the results show that the Tg of PC thin films is thickness dependent, but the dependence is weaker than the results for freely standing films and similar to literature data for PC films supported on rigid substrates. It was also found that the rubbery plateau region for the PC films stiffens dramatically, but still less than what has been observed for freely standing polycarbonate films. The rubbery stiffening is discussed in terms of a recently reported model that relates macroscopic segmental dynamics with the stiffening. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1559–1566  相似文献   

7.
The effect of nanoscale confinement on the glass transition temperature, Tg, of freely standing polystyrene (PS) films was determined using the temperature dependence of a fluorescence intensity ratio associated with pyrene dye labeled to the polymer. The ratio of the intensity of the third fluorescence peak to that of the first fluorescence peak in 1-pyrenylmethyl methacrylate-labeled PS (MApyrene-labeled PS) decreased with decreasing temperature, and the intersection of the linear temperature dependences in the rubbery and glassy states yielded the measurement of Tg. The sensitivity of this method to Tg was also shown in bulk, supported PS and poly(isobutyl methacrylate) films. With free-standing PS films, a strong effect of confinement on Tg was evident at thicknesses less than 80–90 nm. For MApyrene-labeled PS with Mn = 701 kg mol−1, a 41-nm-thick film exhibited a 47 K reduction in Tg relative to bulk PS. A strong molecular weight dependence of the Tg-confinement effect was also observed, with a 65-nm-thick free-standing film exhibiting a reduction in Tg relative to bulk PS of 19 K with Mn = 701 kg mol−1 and 31 K with Mn = 1460 kg mol−1. The data are in reasonable agreement with results of Forrest, Dalnoki-Veress, and Dutcher who performed the seminal studies on Tg-confinement effects in free-standing PS films. The utility of self-referencing fluorescence for novel studies of confinement effects in free-standing films is discussed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2754–2764, 2008  相似文献   

8.
The photon transmission technique was used to monitor the temperature evolution of film formation from poly(vinyl acetate) (PVAc) latex particles with two different molecular weights. Two sets of latex films were prepared below the glass transition temperature (Tg) of PVAc, which are named as low (LM) and high molecular weight (HM) films. These films were annealed at elevated temperatures above the Tg of PVAc for various time intervals. It is observed that transmitted photon intensity (Itr) from these films increased as the annealing temperature was increased. Onset temperatures (TH) at given times (τH) for starting the optical clarity of LM and HM films were measured and used to calculate the healing activation energies (ΔH) for the PVAc minor chains, and found to be as 28.1 kcal/mol and 27.7 kcal/mol, respectively. The increase in the transmitted photon intensity, Itr above TH was attributed to the increase in the number of disappeared interfaces between the deformed latex particles. Prager–Tirrell (PT) model was employed to interpret the increase in the crossing density of chains at the junction surfaces. The interdiffusion (backbone) activation energies (ΔE) were measured and found to be 177.5 kcal/mol and 210.7 kcal/mol for a diffusing PVAc chains across the junction surface of LM and HM latex films, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2918–2925, 2007  相似文献   

9.
The nanobubble inflation method is the only experimental technique that can measure the viscoelastic creep compliance of unsupported ultrathin films of polymers over the glass–rubber transition zone as well as the dependence of the glass transition temperature (Tg) on film thickness. Sizeable reduction of Tg was observed in polystyrene (PS) and bisphenol A polycarbonate by the shift of the creep compliance to shorter times. The dependence of Tg on film thickness is consistent with the published data of free‐standing PS ultrathin films. However, accompanying the shift of the compliance to shorter times, a decrease in the rubbery plateau compliance is observed. The decrease becomes more dramatic in thinner films and at lower temperatures. This anomalous viscoelastic behavior was also observed in poly(vinyl acetate) and poly (n‐butyl methacrylate), but with large variation in the change of either the Tg or the plateau compliance. By now, well established in bulk polymers is the presence of three different viscoelastic mechanisms in the glass–rubber transition zone, namely, the Rouse modes, the sub‐Rouse modes, and the segmental α‐relaxation. Based on the thermorheological complexity of the three mechanisms, the viscoelastic anomaly observed in ultrathin polymer films and its dependence on chemical structure are explained in the framework of the Coupling Model. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

10.
The modulus and glass transition temperature (Tg) of ultrathin films of polystyrene (PS) with different branching architectures are examined via surface wrinkling and the discontinuity in the thermal expansion as determined from spectroscopic ellipsometry, respectively. Branching of the PS is systematically varied using multifunctional monomers to create comb, centipede, and star architectures with similar molecular masses. The bulk‐like (thick film) Tg for these polymers is 103 ± 2 °C and independent of branching and all films thinner than 40 nm exhibit reductions in Tg. There are subtle differences between the architectures with reductions in Tg for linear (25 °C), centipede (40 °C), comb (9 °C), and 4 armed star (9 °C) PS for ≈ 5 nm films. Interestingly, the room temperature modulus of the thick films is dependent upon the chain architecture with the star and comb polymers being the most compliant (≈2 GPa) whereas the centipede PS is most rigid (≈4 GPa). The comb PS exhibits no thickness dependence in moduli, whereas all other PS architectures examined show a decrease in modulus as the film thickness is decreased below ~40 nm. We hypothesize that the chain conformation leads to the apparent susceptibility of the polymer to reductions in moduli in thin films. These results provide insight into potential origins for thickness dependent properties of polymer thin films. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

11.
A series of linear and lightly crosslinked nanostructured latices was prepared by a sequential multistage semicontinuous emulsion polymerization process alternating styrene (S) and n‐butyl acrylate (BA) monomer feeds five times, that is ten stages, and vice versa, along with several control latices. Transmission electron micrographs of the RuO4‐stained cross sections of nanostructured and copolymer latex particles and films showed that their particle morphologies were not very different from each other, but the nanostructured latex particles were transformed into a nanocomposite film containing both polystyrene (PS) and poly(n‐butyl acrylate) (PBA) nanodomains interconnected by their diffuse polymer mixtures (i.e. interlayers). The thermal mechanical behaviors of the nanostructured latex films showed broad but single Tgs slightly higher than those of their counterpart copolymer films. These single Tgs indicated that their major component phases were the diffuse interlayers and that they behaved like pseudopolymer alloys. The minimum film formation temperatures of nanostructured latices capped with PBA and PS, respectively, were 15 °C lower than and equal to those of their counterpart copolymer latices, but their Tgs were about 10 °C higher. Consequently, nanostructured latices enabled us to combine good film formation with high strengths for adhesives and coatings applications. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2826–2836, 2006  相似文献   

12.
A series of novel poly(urethane amide) films were prepared by the reaction of a polyurethane (PU) prepolymer and a soluble polyamide (PA) containing aliphatic hydroxyl groups in the backbone. The PU prepolymer was prepared by the reaction of polyester polyol and 2,4‐tolylenediisocyanate and then was end‐capped with phenol. Soluble PA was prepared by the reaction of 1‐(m‐aminophenyl)‐2‐(p‐aminophenyl)ethanol and terephthaloyl chloride. The PU prepolymer and PA were blended, and the clear, transparent solutions were cast on glass substrates; this was followed by thermal treatments at various temperatures to produce reactions between the isocyanate group of the PU prepolymer and the hydroxyl group of PA. The opaque poly(urethane amide) films showed various properties, from those of plastics to those of elastomers, depending on the ratio of the PU and PA components. Dynamic mechanical analysis showed two glass‐transition temperatures (Tg's), a lower Tg due to the PU component and a higher Tg due to the PA component, suggesting that the two polymer components were phase‐separated. The rubbery plateau region of the storage modulus for the elastic films was maintained up to about 250 °C, which is considerably higher than for conventional PUs. Tensile measurements of the elastic films of 90/10 PU/PA showed that the elongation was as high as 347%. This indicated that the alloying of PU with PA containing aliphatic hydroxyl groups in the backbone improved the high‐temperature properties of PU and, therefore, enhanced the use temperature of PU. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3497–3503, 2002  相似文献   

13.
Summary: We report on the preparation and properties of soy protein isolate (SPI)-sodium dodecyl sulfate (SDS)-polycaprolactone-triol (PCL-T) films obtained by solvent casting from solutions containing variable amounts of SDS or SDS/PCL-T. It is shown that the mechanical and thermal properties, and the morphology of SPI-based biofilms can be easily controlled by changing SDS, PCL-T, and moisture contents, enabling the fabrication of rigid and flexible materials as pure SPI films [Young's modulus ∼ 1 400 MPa, elongation at break (E) ∼ 2%, and glass transition temperature (Tg) ∼ 150 °C] and SPI/SDS/PCL-T films with [PCL-T] ≥ 18% (Young's modulus ∼ 50 MPa, E ∼ 90%, and Tg ∼ 135 °C), respectively. Micrographs taken at the cross-section of biofilms whose [PCL-T] ≥ 18% revealed the occurrence of a porous matrix, whereas a dense bulk phase was otherwise observed (pure SPI, SPI/SDS, and SPI/SDS/PCL-T films with [PCL-T] < 18%).  相似文献   

14.
To tolerate high processing temperature during the fabrication of low-temperature polycrystalline silicon thin-film transistors (LTPS–TFT) in flexible OLED devices, the polyimide (PI) films, which are used as substrate, should have ultra-high glass transition temperature (Tg > 450°C) and ultra-low coefficient of thermal expansion (CTE at 0–5 ppm K−1). In this paper, two novel heterocyclic monomers, namely, N,N'-(xanthone-2,7-diyl)bis(4-aminobenzamide) (p-DAXBA) and N,N'-(xanthone-2,7-diyl)bis(3-aminobenzamide) (m-DAXBA), which contain a xanthone moiety, are prepared and polycondensed with pyromellitic dianhydride (PMDA), respectively. PI films (PIa and PIb) with intrinsic high Tg and low CTE are designed from the perspective of rigid conjugate xanthone structure and hydrogen bonding interaction. It is found that the PIa films prepared by p-DAXBA have better linear structure of molecular chains and show relatively higher Tg and lower CTE. The Tg of PIa-40 is greater than 450°C, and CTE can reach as low as 2.7 ppm K−1, tensile strength of 179 MPa, modulus of 5.67 GPa, indicating potential application prospect as a flexible OLED substrate.  相似文献   

15.
A series of polyimides containing ether and ketone moieties were synthesized from 1,3‐bis(4‐fluorobenzoyl) benzene and several commercially available dianhydrides via a conventional two‐step polymerization. The inherent viscosities of Polyamide acids ranged from 0.46 to 0.73 dL/g. Thermal properties, mechanical properties, and thermalplasticity of the obtained polimide films were investigated by focusing on the chemical structures of their repeat units. These films were amorphous, flexible, and transparent. All films displayed low Tgs (184–225 °C) but also excellent thermal stability, the 5% weight loss temperature was up to 542 °C under nitrogen. The films showed outstanding mechanical properties with the modulus up to 3.0 GPa and the elongation at break in the range of 8–160%. The uniaxial stretching of PI‐a at high temperature was studied owing to its excellent flexibility. The PI‐a had an elongation at break up to 1600% at 245 °C and the uniaxially stretched film exhibited a much higher modulus (3.9 GPa) and strength (240 MPa) than undrawn film. The results indicated that PI‐a can potentially be used to prepare materials such as fiber, ultra‐thin film or ultra‐high modulus film. All the obtained films also demonstrated excellent thermoplasticity (drop of E′ at Tg > 103) which made the polyimides more suitable for melt processing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2878–2884, 2010  相似文献   

16.
Novel linear and three-arm star radial thermoplastic elastomers (TPE) comprising rubbery polyisobutylene (PIB) center blocks connected to glassy poly(p-chlorostyrene) (PpClSt) outer blocks have been synthesized by sequential monomer addition. For triblock polymer synthesis isobutylene (IB) was added continuously to a bifunctional initiating system (dicumylmethyl ether/TiCl4) dissolved in CH3Cl/methylcyclohexane solvent mixture at –80°C. After the living PIB sequence has reached the desired molecular weight p-chlorostyrene (pClSt) was added to produce the PpClSt end blocks. The synthesis conditions for the TPEs were developed with the help of model experiments using the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4 initiating system and subsequent PIB-PpClSt diblock syntheses. The triblock and radiol block polymers after solvent extraction exhibited excellent TPE characteristics. Copolymer compositions were determined by 1H-NMR and UV spectroscopy and further characterization was carried out by GPC, DSC, DMTA, and selective solvent extraction techniques. The TPEs exhibit two Tg's characteristic of glassy PpClSt (129°C) and rubbery PIB (?70°C) segments. Cast TPE films were clear and gave tensile strengths of 1.2-21 MPa with elongations of 460–1500%. Transmission electron microscopy (TEM) of a triblock polymer containing ca. 38 wt % PpClSt suggests cylindrical PpClSt domains of 40–70 nm length and 25–35 nm diam embedded in a PIB matrix.  相似文献   

17.
The viscoelastic properties of various crosslinked natural rubbers, NR, were investigated by mechanical spectroscopy. The glass transition temperature, Tg, was found to be dependent on both the crosslink density and the crosslink type. Higher values of Tg were obtained for sulfur-crosslinked NR than for peroxide-crosslinked NR at the same crosslink density. The greater influence of the sulfur content on Tg may be attributed to polysulfidic crosslinks and cyclic sulfide structures favored at high sulfur contents. Sulfur-vulcanized NRs with monosulfidic crosslinks, favored at relatively high accelerator/sulfur ratios, have properties more similar to the peroxide-cured NR with simple carbon(SINGLE BOND)carbon crosslinks covalent bonds, resulting in only small shifts in Tg. A qualitative analysis of monosulfidic crosslinks and polysulfidic structures was performed with 13C solid-state NMR spectroscopy. The storage modulus, E′, in the rubbery plateau region increased with increasing crosslink density. However, the crosslink type did not influence the moduli values as much as it influenced the Tg values. Different methods of detecting the crosslink density were also discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
The integrals of the linear loss shear modulus vs. temperature (loss area, LA) and linear tan δ vs. temperature (tan δ area, TA) were characterized for various core/shell latex particles with synthetic rubber, poly(butadiene-stat-styrene) [P (Bd/S), 90/10], and interpenetrating polymer networks (IPN) as the cores. The IPN cores were composed of P(Bd/S) (Tg ≃ − 70°C) and an acrylate based copolymer (Tg around 10°C) for potential impact and damping improvement in thermoplastics. Poly(styrene-stat-acrylonitrile) (SAN, 72/28) was the shell polymer for all these polymers. Under the same loading, for both toughening and damping controls, among the IPN core/shell, blend of separate core/shell, and multilayered core/shell polymers, the IPN core/shell polymers were the best dampers. However, the other core/shell polymers also showed higher LA values than P(Bd/S)/SAN core/shell polymer. A comparison of LA values via a group contribution analysis method was made, the effect of particle morphology and phase continuity on damping being studied. Inverted core/shell latex particles (glassy polymer SAN was synthesized first) showed much higher LA and TA values than normal core/shell ones (rubbery polymer was synthesized first). Models for maximum LA and TA behavior are proposed. The damping property was essentially controlled by the phase miscibility and morphology of the core/shell latex particles. The LA values for each peak in these multiphase materials provided some indication of the several fractional phase volumes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1501–1514, 1997  相似文献   

19.
We report on evanescent wave optical measurements of the glass transition temperature, Tg, of spin-cast PMMA films as a function of film thickness and molecular weight. It was found that for films of high molecular weight PMMA (Mn > 100,000 g mol−1) a strong Tg depression occurs for films that are thinner than 100 nm in case they are deposited on hydrophobic substrates. This strong Tg depression of up to 25°C decreases if similarly thick films of PMMA of low molecular weights are investigated and vanishes completely for PMMA with Mn < 12,000 g mol−1. For films made of these materials Tg is found to be identical to that of the bulk even for films as thin as 5 nm. The results might be interpreted in terms of free volume considerations. To check this assumption we also designed and built a pressure cell that can be used together with the evanscent wave optical techniques for similar measurement, but with the additional option to do the measurements at different pressures up to ca. 100 MPa to further vary the free volume of these polymer films in constrained geometry. Some first results obtained with this setup are also described.  相似文献   

20.
Master curves of the small strain and dynamic shear modulus are compared with the transient mechanical response of rubbers stretched at ambient temperature over a seven‐decade range of strain rates (10?4 to 103 s?1). The experiments were carried out on 1,4‐ and 1,2‐polybutadienes and a styrene–butadiene copolymer. These rubbers have respective glass transition temperatures, Tg, equal to ?93.0, 0.5, and 4.1 °C, so that the room temperature measurements probed the rubbery plateau, the glass transition zone, and the onset of the glassy state. For the 1,4‐polybutadiene, in accord with previous results, strain and strain rate effects were decoupled (additive). For the other two materials, encroachment of the segmental dynamics precluded separation of the effects of strain and rate. These results show that for rubbery polymers near Tg the use of linear dynamic data to predict stresses, strain energies, and other mechanical properties at higher strain rates entails large error. For example, the strain rate associated with an upturn in the modulus due to onset of the glass transition was three orders of magnitude higher for large tensile strains than for linear oscillatory shear strains. © 2011 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号