首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the Whitham equations for the Camassa-Holm equation. The equations are neither strictly hyperbolic nor genuinely nonlinear. We are interested in the initial value problem of the Whitham equations. When the initial values are given by a step function, the Whitham solution is self-similar. When the initial values are given by a smooth function, the Whitham solution exists within a cusp in the x-t plane. On the boundary of the cusp, the Whitham solution matches the Burgers solution, which exists outside the cusp.  相似文献   

2.
The general class of problems we consider is the following: Let Ω 1 be a bounded domain in \({\mathbb{R}^d}\) for d ≥ 2 and let u 0 be a velocity field on all of \({\mathbb{R}^d}\) . Suppose that for all R ≥ 1 we have an operator \({\mathcal{T}_R}\) that projects u 0 restricted to 1 (Ω 1 scaled by R) into a function space on 1 for which the solution to some initial value problem is well-posed with \({\mathcal{T}_{R}u^0}\) as the initial velocity. Can we show that as R → ∞ the solution to the initial value problem on 1 converges to a solution in the whole space? We answer this question when d  =  2 for weak solutions to the Navier-Stokes and Euler equations. For the Navier-Stokes equations we assume the lowest regularity of u 0 for which one can obtain adequate control on the pressure. For the Euler equations we assume the lowest feasible regularity of u 0 for which uniqueness of solutions to the Euler equations is known (thus, we allow “slightly unbounded” vorticity). In both cases, we obtain strong convergence of the velocity and the vorticity as R → ∞ and, for the Euler equations, the flow. Our approach yields, in principle, a bound on the rates of convergence.  相似文献   

3.
We consider initial-boundary value problems for the derivative nonlinear Schrödinger (DNLS) equation on the half-line x>0. In a previous work, we showed that the solution q(x,t) can be expressed in terms of the solution of a Riemann-Hilbert problem with jump condition specified by the initial and boundary values of q(x,t). However, for a well-posed problem, only part of the boundary values can be prescribed; the remaining boundary data cannot be independently specified, but are determined by the so-called global relation. In general, an effective solution of the problem therefore requires solving the global relation. Here, we present the solution of the global relation in terms of the solution of a system of nonlinear integral equations. This also provides a construction of the Dirichlet-to-Neumann map for the DNLS equation on the half-line.  相似文献   

4.
B. Pelloni 《Physics letters. A》2009,373(22):1940-1950
We consider boundary value problems for the N-wave interaction equations in one and two space dimensions, posed for x?0 and x,y?0, respectively. Following the recent work of Fokas, we develop an inverse scattering formalism to solve these problems by considering the simultaneous spectral analysis of the two ordinary differential equations in the associated Lax pair. The solution of the boundary value problems is obtained through the solution of a local Riemann-Hilbert problem in the one-dimensional case, and a nonlocal Riemann-Hilbert problem in the two-dimensional case.  相似文献   

5.
Cauchy problems for Einstein's conformal vacuum field equations are reduced to Cauchy problems for first order quasilinear symmetric hyperbolic systems. The “hyperboloidal initial value” problem, where Cauchy data are given on a spacelike hypersurface which intersects past null infinity at a spacelike two-surface, is discussed and translated into the conformally related picture. It is shown that for conformal hyperboloidal initial data of classH S,s≧4, there is a unique (up to questions of extensibility) development which is a solution of the conformal vacuum field equations of classH S. It provides a solution of Einstein's vacuum field equations which has a smooth structure at past null infinity.  相似文献   

6.
The Cauchy problem for the Schrödinger equation with a monomial nonlinear term is considered. Under a growth condition on the nonlinear term, it is shown that low energy, exponentially decaying initial data yield a global solution which is analytic in its space variables and whose domain of analyticity expands in time. It is also shown that low energy analytic initial data on a symmetric tube domain lead to a global solution which is analytic on the same tube domain for all time.  相似文献   

7.
We consider, in a 1+3 space time, arbitrary (finite) systems of nonlinear Klein-Gordon equations (respectively Schrödinger equations) with an arbitrary local and analytic non-linearity in the unknown and its first and second order space-time (respectively first order space) derivatives, having no constant or linear terms. No restriction is given on the frequency sign of the initial data. In the case of non-linear Klein-Gordon equations all masses are supposed to be different from zero.We prove, for such systems, that the wave operator (fromt= tot=0) exists on a domain of small entire test functions of exponential type and that the analytic Cauchy problem, in +×3, has a unique solution for each initial condition (att=0) being in the image of the wave operator. The decay properties of such solutions are discussed in detail.Partially supported by the Swiss National Science FoundationOn leave from Institut de Physique Théorique, 32 Bd d'Ivoy, CH-1211 Geneve 4 Switzerland.  相似文献   

8.
《Physics Reports》2001,347(5):373-459
The quantum mechanical three-body problem is studied for general short-range interactions. We work in coordinate space to facilitate accurate computations of weakly bound and spatially extended systems. Hyperspherical coordinates are used in both the interpretation and as an integral part of the numerical method. Universal properties and model independence are discussed throughout the report. We present an overview of the hyperspherical adiabatic Faddeev equations. The wave function is expanded on hyperspherical angular eigenfunctions which in turn are found numerically using the Faddeev equations. We generalize the formalism to any dimension of space d greater or equal to two. We present two numerical techniques for solving the Faddeev equations on the hypersphere. These techniques are effective for short and intermediate/large distances including use for hard core repulsive potentials. We study the asymptotic limit of large hyperradius and derive the analytic behaviour of the angular eigenvalues and eigenfunctions. We discuss four applications of the general method. We first analyze the Efimov and Thomas effects for arbitrary angular momenta and for arbitrary dimensions d. Second we apply the method to extract the general behaviour of weakly bound three-body systems in two dimensions. Third we illustrate the method in three dimensions by structure computations of Borromean halo nuclei, the hypertriton and helium molecules. Fourth we investigate in three dimensions three-body continuum properties of Borromean halo nuclei and recombination reactions of helium atoms as an example of direct relevance for the stability of Bose–Einstein condensates.  相似文献   

9.
A classical problem on small-scale fluctuations of the Rankine vortex in a compressible gas has been numerically simulated. Euler equations for a compressible gas have been solved by the CABARET method. Simulation results well predict the value of the eigenfrequency of the boundary fluctuations for the azimuthal harmonic n = 2 and almost coincide with the analytic solution. The value of the acoustic instability increment has been quantitatively predicted despite the fact that it is small and it has been revealed at a fluctuation number higher than 100.  相似文献   

10.
The two-dimensional boundary-value problem of the unsteady flow of an incompressible viscous gas moving behind the piston in a “long” rectangular branch pipe is solved. An analytic solution is constructed for two velocity components with a refining polynomial, which reduces to a system of nonlinear algebraic equations after the substitution into the governing system of equations. By virtue of the solution uniqueness of the boundary-value problem under study, the only solution is found from obtained values of the refining polynomial constants for each point of the branch pipe internal space for the velocity components in analytic form.  相似文献   

11.
Our principal problem consists in finding threshold values for a family of blow-up solutions of nonlinear evolution problems depending on a real parameter λ. We seek to obtain the solution of the problem in a constructive and unified approach which would provide the answer for the following general question: Is there is a constructive method for finding the threshold values? We illustrate our approach by means of an example of finding a threshold value for a family of parabolic equations with nonlinearity indefinite in sign. In the main result, the threshold value is expressed via explicitly specified dual variational principles of a new type.  相似文献   

12.
We introduce more general concepts of Riemann–Liouville fractional integral and derivative on time scales, of a function with respect to another function. Sufficient conditions for existence and uniqueness of solution to an initial value problem described by generalized fractional order differential equations on time scales are proved.  相似文献   

13.
In a series of recent papers we have shown how the dynamical behavior of certain classical systems can be analyzed using operators evolving according to Heisenberg-like equations of motions. In particular, we have shown that raising and lowering operators play a relevant role in this analysis. The technical problem of our approach stands in the difficulty of solving the equations of motion, which are, first of all, operator-valued and, secondly, quite often nonlinear. In this paper we construct a general procedure which significantly simplifies the treatment for those systems which can be described in terms of fermionic operators. The proposed procedure allows to get an analytic solution, both for quadratic and for more general hamiltonians.  相似文献   

14.
The equations of motion of compressible viscous and heat-conductive fluids are investigated for initial boundary value problems on the half space and on the exterior domain of any bounded region. The global solution in time is proved to exist uniquely and approach the stationary state ast→∞, provided the prescribed initial data and the external force are sufficiently small.  相似文献   

15.
A Maximum Principle Applied to Quasi-Geostrophic Equations   总被引:16,自引:7,他引:9  
We study the initial value problem for dissipative 2D Quasi-geostrophic equations proving local existence, global results for small initial data in the super-critical case, decay of Lp-norms and asymptotic behavior of viscosity solution in the critical case. Our proofs are based on a maximum principle valid for more general flows.Partially supported by BFM2002-02269 grant.Partially supported by BFM2002-02042 grant.  相似文献   

16.
We present a Riemann?CHilbert problem formalism for the initial boundary value problem for the Camassa?CHolm equation on the half-line x > 0 with homogeneous Dirichlet boundary condition at x = 0. We show that, similarly to the problem on the whole line, the solution of this problem can be obtained in parametric form via the solution of a Riemann?CHilbert problem determined by the initial data via associated spectral functions. This allows us to apply the non-linear steepest descent method and to describe the large-time asymptotics of the solution.  相似文献   

17.
Non-linear dynamic problems governed by ordinary (ODE) or partial differential equations (PDE) are herein approached by means of an alternative methodology. A generalized solution named WEM by the authors and previously developed for boundary value problems, is applied to linear and non-linear equations. A simple transformation after selecting an arbitrary interval of interest T allows using WEM in initial conditions problems and others with both initial and boundary conditions. When dealing with the time variable, the methodology may be seen as a time integration scheme. The application of WEM leads to arbitrary precision results. It is shown that it lacks neither numerical damping nor chaos which were found to be present with the application of some of the time integration schemes most commonly used in standard finite element codes (e.g., methods of central difference, Newmark, Wilson-θ, and so on). Illustrations include the solution of two non-linear ODEs which govern the dynamics of a single-degree-of-freedom (s.d.o.f.) system of a mass and a spring with two different non-linear laws (cubic and hyperbolic tangent respectively). The third example is the application of WEM to the dynamic problem of a beam with non-linear springs at its ends and subjected to a dynamic load varying both in space and time, even with discontinuities, governed by a PDE. To handle systems of non-linear equations iterative algorithms are employed. The convergence of the iteration is achieved by takingn partitions of T. However, the values of T/n are, in general, several times larger than the usual Δt in other time integration techniques. The maximum error (measured as a percentage of the energy) is calculated for the first example and it is shown that WEM yields an acceptable level of errors even when rather large time steps are used.  相似文献   

18.
We consider the problem of constructing cosmological solutions of the Einstein–Maxwell equations that contain multiple charged black holes. By considering the field equations as a set of constraint and evolution equations, we construct exact initial data for N charged black holes on a hypersphere. This corresponds to the maximum of expansion of a cosmological solution, and provides sufficient information for a unique evolution. We then consider the specific example of a universe that contains eight charged black holes, and show that the existence of non-zero electric charge reduces the scale of the cosmological region of the space. These solutions generalize the Majumdar–Papapetrou solutions away from the extremal limit of charged black holes, and provide what we believe to be some of the first relativistic calculations of the effects of electric charge on cosmological backreaction.  相似文献   

19.
20.
We present a new improvement to the Alekseev inverse scattering method. This improved inverse scattering method is extended to a double form, followed by the generation of some new solutions of the double-complex Kinnersley equations. As the double-complex function method contains the Kramer-Neugebauer substitution and analytic continuation, a pair of real gravitation soliton solutions of the Einstein’s field equations can be obtained from a double N-soliton solution. In the case of the flat Minkowski space background solution, the general formulas of the new solutions are presented.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号