首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Applicability of the Jouyban-Acree model for calculating absolute viscosity of binary liquid mixtures with respect to temperature and mixture composition is proposed. The correlation ability of the model is evaluated by employing viscosity data of 143 various aqueous and non-aqueous liquid mixtures at various temperatures collected from the literature. The results show that the model is able to correlate the data with an overall percentage deviation (PD) of 1.9+/-2.5%. In order to test the prediction capability of the model, three experimental viscosities from the highest and lowest temperatures along with the viscosities of neat liquids at all temperatures have been employed to train the model, then the viscosity values at other mixture compositions and temperatures were predicted and the overall PD obtained is 2.6+/-4.0%.  相似文献   

2.
This paper is the second in a series of consecutive publications, explaining the concept of high temperature liquid chromatography under various important aspects. The second publication deals with the determination of the viscosity of binary solvent mixtures used in reversed phase liquid chromatography in a temperature range between 25 and 250 °C. In literature, only limited data of the temperature dependent viscosities of liquid solvents or binary solvent mixtures can be found. Therefore, the viscosities of the pure solvents as well as the binary mixtures had to be determined experimentally up to 250 °C. The viscosity data were used to estimate the pressure drop in a capillary connecting a high-temperature HPLC system with a mass spectrometer. The solvent perturbation could be avoided by adjusting the diameter of the transfer capillary to the viscosity and vapour pressure of the mobile phase. The viscosity data were also used to show that a significant gain in analysis speed is theoretically feasible. This factor clearly depends on the nature of the solvent system, because for mixtures with a large viscosity maximum at ambient temperature, this effect is most pronounced.  相似文献   

3.
A viscosity model based on the Eyring’s theory and a cubic equation of state (Peng–Robinson–Stryjek–Vera) has been applied to the correlation and prediction of experimental liquid viscosities of binary mixtures containing polar fluids within a wide range of temperature, pressure and composition (encompassing low-pressure and compressed liquid conditions). Highly non-idealities of the binary mixtures considered in this study were conveniently handled via the application of the Wong–Sandler approach for the mixing rules used in the cubic equation of state. The results obtained were highly satisfactory for various non-ideal binary mixtures over the whole composition range at a low pressure. The predictive capabilities of the present approach were also verified in the representation of liquid viscosities at elevated pressures preserving the same model parameters previously obtained at low pressure.  相似文献   

4.
Knowledge of the viscosity of binary mixtures is of great importance in many industrial processes. Rarely can the viscosity of mixtures be obtained from the sum of the viscosities of the pure components. The theoretical study of the viscosity of mixtures is generally complicated. Numerous empirical correlation models have been proposed. The present study proposes a new empirical correlation equation, based on lineal behavior. The equation can easily be used with one, two or three parameters, and in many cases it improves upon the models that are commonly used. Likewise, the excess viscosity calculated with the proposed equation generally yield more satisfactory results than those obtained with the polynomial equation of Redlich-Kister.  相似文献   

5.
The study of physical properties of binary liquid mixtures is of great importance for understanding and characterisation of molecular interactions. In the same way, some models attempt to correlate viscosity in liquid mixtures to release eventual interactions, structures’ change and peculiar behaviours. Grunberg–Nissan (GN) parameters for viscosity (η) in 1,4-dioxane?+?water mixtures over the entire range of mole fractions under atmospheric pressure and from 293.15?K to 320.15?K were calculated from experimental dynamic viscosities presented in previous works. Many experimenters investigate physicochemical properties using numerous models to derive some interpretations and conclusions. The present work comes within the framework of correlating different used equations to restrict investigations with an optimal of number of these models. Relationship between the GN, Arrhenius and Jouyban–Acree parameters for viscosity is shown in one binary mixture which dielectric constants of their pure components are very distinct.  相似文献   

6.
The study of physical properties of binary liquid mixtures is of great importance for understanding and characterizing intermolecular interactions. Similarly, some models attempt to correlate viscosity in liquid mixtures in order to illuminate interacting structures and peculiar behaviors. Grunberg?CNissan parameters for viscosity (??) in isobutyric acid?+?water mixtures over the entire range of mole fractions under atmospheric pressure and from 302.15 to 313.15?K were calculated from experimental dynamic viscosities presented in previous works. Many experimenters investigate physicochemical properties using various models to develop interpretations and conclusions. The present work comes within the framework of correlating different equations. Relationships between the Grunberg?CNissan and Arrhenius and Jouyban?CAcree parameters for viscosity are shown in one critical binary mixture.  相似文献   

7.
Densities and viscosities for the four binary liquid mixtures of methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate with hexane-1-ol at temperatures 303.15 and 313.15 K and at atmospheric pressure were measured over the entire composition range. These values were used to calculate excess molar volumes and deviation in viscosities which were fitted to Redlich–Kister polynomial equation. Recently proposed Jouyban Acree model was also used to correlate the experimental values of density and viscosity. The mixture viscosities were correlated by several semi-empirical approaches like Hind, Choudhary–Katti, Grunberg–Nissan, Tamura and Kurata, McAllister three and four body model equations. A graphical representation of excess molar volumes and deviation in isentropic compressibility shows positive nature whereas deviation in viscosity shows negative nature at both temperatures for all four binary liquid mixtures. Positive values of excess molar volumes show that volume expansion is taking place causing rupture of H-bonds in self associated alcohols. The results were discussed in terms of molecular interactions prevailing in the mixtures.  相似文献   

8.
Densities, viscosities, and refractive indices at 298.15 K and atmospheric pressure are reported for the binary and ternary mixtures formed by tris(2-hydroxyethyl) methylamonium methylsulfate, water, and methanol. Excess molar volumes and viscosity logarithm variations have been calculated from the physical properties of the pure compounds and their mixtures. The UNIQUAC volume and area parameters have been determined for the tris(2-hydroxyethyl) methylamonium methylsulfate ionic liquid. All properties changes of mixing have been fitted using two polynomial models and the UNIQUAC equation. An evaluation of the correlation capacity has been analyzed for the three models.  相似文献   

9.
Viscosities of ternary liquid mixtures containing benzene + cyclohexane + carbon tetrachloride and the three possible binary combinations were measured at 25°C, and the excess viscosities were computed. Theoretical expressions for viscosity were developed on the basis of the Flory theory, the significant structure theory and a theory based on a method of estimating the properties of multi-component systems from those of binary systems. Reasonable agreement between experimental and theoretical viscosities is found.  相似文献   

10.
This articles studied and determined the viscosities of the binary mixtures of water–methanol, water–ethanol, water–propanol, water–acetone, acetone–ethanol, methanol–ethanol, and acetone–hexane and the ternary mixtures of water–methanol–ethanol and water–ethanol–acetone at 20°C. It is shown that the mixing of water with the alcohols and acetone resulted in a positive deviation of viscosity, which reached the maximum value at the water mole fraction x 1 ~ 0.7 for water–methanol, x 1 ~ 0.72 for water–ethanol, x 1 ~ 0.74 for water–propanol, and x 1 ~ 0.83 for water–acetone binary mixture. This viscosity deviation can be mainly attributed to the formation of micelles of alcohol or acetone molecules in water because of the hydrophobic attraction between the hydrocarbon chains. The micelle surfaces are surrounded by hydration layers, leading to the positive viscosity deviation in the liquid mixtures because the water in hydration layers has a much higher viscosity than bulk water. Also, the contrary observation was found in the binary mixtures of acetone–ethanol and acetone–hexane, having a negative viscosity deviation.  相似文献   

11.
In this study, a new correlation is proposed for estimating 1-alkyl-3-methylimidazolium ionic liquid (IL) viscosities at different temperatures and atmospheric pressure. Since ILs are rather novel, many of their physical properties are still unavailable. Because of this limitation, the aim of this work was to propose a correlation with a new insight and approach, which requires a minimum number of physical properties as input parameters. In addition to minimal dependency on physical properties, further goals in the development of the model were generality, ease-of-use, simplicity and high accuracy. A total of 2073 literature viscosity datapoints at different temperatures for 38 different ILs were used and a correlation was developed which satisfied the above-mentioned goals. The IL viscosity models of Lazzús and Pulgar-Villarroel, and Gardas and Coutinho were compared to the proposed correlation. More reliable results were obtained by the proposed relation in comparison to literature models.  相似文献   

12.
Experimental viscosities provide information on the structure of liquids and are required in the design of processes, which involve fluid flow, mass transfer, or heat transfer calculations. This work reports experimental viscosity data of the binary mixtures: 1-decanol + hexane, 1-decanol + diethylamine, and hexane + diethylamine at 10, 25, and 40°C and atmospheric pressure for the whole range of compositions. The viscosities of the pure liquids and their mixtures were determined using Cannon Fenske viscometers thermostated at ±0.01°C. The estimated error in the measured viscosities was less than ±0.005 mPa-s. The dynamic viscosity and the excess energy of activation for viscous flow were also calculated. The equation of Redlich–Kister was used for fitting the excess properties of the binary mixtures. The excess viscosity shows positive deviations from ideal behavior for the mixtures 1- decanol + hexane and 1-decanol + diethylamine and a small negative deviation for the binary system hexane + diethylamine. The experimental results have been also used to test some empirical and semiempirical equations adopted previously to correlate viscosity composition data.  相似文献   

13.
In this paper, experimental densities and dynamic viscosities of 1-ethyl-3-methylimidazolium based ionic liquids (ILs) with the anions acetate and dicyanamide are presented in a wide temperature range (298.15 to 343.15 K) at atmospheric pressure. Surface tension of these ILs was measured at T = 298.15 K. The effect of water and/or ethanol compositions on densities and dynamic viscosities of these ILs are studied in binary and ternary mixtures. A quadratic mixing rule was used to correlate binary and ternary liquid densities. The Eyring–Patel–Teja model, which is recommended for polar and aqueous systems, is used to correlate dynamic viscosity data over the whole range of compositions and temperatures in binary and ternary mixtures. Temperature-dependent interaction parameters are introduced here to account for the changes of viscosities with temperature showing good agreements with experimental data.  相似文献   

14.
A new model for prediction of the viscosities of hydrocarbons including oil and gas mixtures is presented. The model is based on the principle of corresponding states with methane and decane as reference components. The viscosity of a given component or mixture is determined from the reduced viscosities of the reference components using the molecular weight as an interpolation parameter.

The model has been used for prediction of viscosities of both pure components and mixtures over large pressure ranges and for reduced temperatures above 0.476. The results are in good agreement with the experimental data. The new model compares favorably with earlier published methods, which use only one reference component.

Finally, the model has been tested on data for 6 oil mixtures from the North Sea. The mean deviation based on 34 experimental points was 6.4 %.  相似文献   


15.
Correlation of viscosities of pure liquids in a wide temperature range   总被引:2,自引:0,他引:2  
On the basis of Eyring's absolute rate theory, a new two-parameter model is presented for correlating the viscosity data of pure saturated liquids in a wide temperate range. The correlation relates the viscosity, a non-equilibrium property, to equilibrium properties. The parameters in the new correlation can be easily determined through a few viscosity data and a knowledge of the vapor pressure, the saturated liquid volume and the heat of vaporization. The viscosities of 106 pure compounds, including polar, nonpolar, organic and inorganic liquids with total 1473 data points are correlated using this model and compared with data reported in the literature, and the overall average deviation is 1.51%. The results show that the correlation with the new model is satisfactory.  相似文献   

16.
In recent years, ionic liquids have increasingly gained importance as green solvents. The potential of these organic salts, which are moisture and air stable at room temperature, for new chemical processes and technologies is beginning to be recognized. Research on the thermophysical properties of ionic liquids and their mixtures form the basis for future applications. In this contribution, densities, refractive indices, speeds of sound and dynamic viscosities of 1-methyl-3-octylimidazolium tetrafluoroborate, [Omim][BF4], the room temperature ionic liquid (IL) in binary mixtures with methanol, ethanol, 1-propanol and 2-propanol were measured at 298.15K and atmospheric pressure. The excess molar volumes and molar refraction, isentropic compressibility and dynamic viscosity changes of mixing have been calculated and were satisfactorily correlated by the Redlich–Kister polynomial.  相似文献   

17.
Densities and viscosities of binary liquid mixtures of propyl propanoate + heptane and propyl propanoate + octane at temperatures of 278.15, 283.15, 288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15 and 323.15 K have been measured at atmospheric pressure over the entire range of composition. Using these experimental data, the excess molar volumes and the viscosity deviation have been calculated. The experimental data of density and viscosity at different investigated temperatures were mathematically represented by the Jouyban–Acree model. The mean relative deviation (MRD) was used as an error criterion, and the MRD values for data correlation of density and viscosity at different investigated temperatures are less than 0.03% and 0.50%, respectively. Excess molar volumes and viscosity deviations were correlated with Redlich–Kister equation. The calculated data point out the absence of speci?c interactions between the molecules of different components, which would be slightly weaker compared to the interactions in the pure components.  相似文献   

18.
Knowledge of fluids’ physicochemical properties is mandatory for the design and optimisation of industrial processes and products. A data quantity of most importance, in this regard, turns out to be the value of fluid viscosity. Many empirical and semi-empirical formulas have been proposed in the literature to describe the viscosity of pure liquids and binary liquid mixtures. Recently, an interesting equation is proposed for pure solvents correlating the two parameters in the viscosity Arrhenius-type equation, namely the activation energy (Ea) and the pre-exponential factor (As). This paper aims to extend the said correlation to binary liquid mixtures. To achieve this purpose, statistical methods are applied using data sets from the literature of some solvent binary mixtures at different compositions and temperatures. The validation of the extended proposed equation for binary liquid mixtures is important since it simplifies the estimation of viscous behaviour and the ensuing calculations.  相似文献   

19.
Carbon-dioxide-expanded liquids, which are mixtures of organic liquids and compressed CO2, are novel media used in chemical processing. The authors present a molecular simulation study of the transport properties of liquid mixtures formed by acetonitrile and carbon dioxide, in which the CO2 mole fraction is adjusted by changing the pressure, at a constant temperature of 298 K. They report values of translational diffusion coefficients, rotational correlation times, and shear viscosities of the liquids as function of CO2 mole fraction. The simulation results are in good agreement with the available experimental data for the pure components and provide interesting insights into the largely unknown properties of the mixtures, which are being recognized as important novel materials in chemical operations. We find that the calculated quantities exhibit smooth variation with composition that may be represented by simple model equations. The translational and rotational diffusion rates increase with CO2 mole fraction for both the acetonitrile and carbon dioxide components. The shear viscosity decreases with increasing amount of CO2, varying smoothly between the values of pure acetonitrile and pure carbon dioxide. Our results show that adjusting the amount of CO2 in the mixture allows the variation of transport rates by a factor of 3-4 and liquid viscosity by a factor of 8. Thus, the physical properties of the mixture may be tailored to the desired range by changes in the operating conditions of temperature and pressure.  相似文献   

20.
This paper investigates the unsteady-state species segregation of binary liquid mixtures in rectangular thermogravitational columns. The analysis leads to a procedure to obtain both molecular and thermal diffusion coefficients from transient separation measurements. Two models are presented: first, an ideal model where buoyancy only depends on temperature and second, a general model where buoyancy also varies with composition. Steady-state measurements are not required regardless of which model is chosen. As a result, the new procedure is faster than steady-state procedures. When either the molecular or thermal diffusion coefficient is known a priori, the other can be obtained without knowledge of fluid properties such as density, viscosity, thermal expansion, and compositional coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号