共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum state-to-state dynamics for the N((4)S) + OH(X(?2)Π) → H((2)S) + NO(X(?2)Π) reaction is reported on an accurate ab initio potential energy surface of the lowest triplet electronic state (a(3)A(")) of HNO∕HON. It was found that the reaction is dominated by long-lived resonances supported by the HNO and HON wells. Significant non-reactive scattering was observed, indicating substantial deviations from the statistical limit. Due to the large exothermicity of the reaction, the NO product has hot internal state distributions: its rotational state distribution is inverted and peaks near the highest accessible rotational level; and its vibrational state distribution extends to υ = 10 and decays monotonically with the vibrational quantum number. In particular, the predicted product vibrational distribution is in reasonably good agreement with experiment. The calculated differential cross section is dominated by scattering in both the forward and backward directions, consistent with the formation of reaction intermediates. 相似文献
2.
3.
In the present paper, scattering probabilities and rate constants of different channels for the H + BrCH_3 reaction system have been calculated by means of quasiclassical trajectory (QCT) method. Several important kinetic effects such as vibrational enhancement, channel competition, vibrational adiabaticity, mass combination, coupling of angular momenta and the relation between the kinetic effects and the feature of the potential energy surface have been discussed. Based on these analyses, a direct-type rebonded mechanism for this reaction has been inferred and used to explain the nonsymmetric angular distribution of the products crossed-molecular beam experiment. The agreement of calculation with experimental results is satisfactory. 相似文献
4.
5.
The mechanism and dynamical properties for the reaction of NCS and OH radicals have been investigated theoretically. The minimum energy paths (MEP) of the reaction were calculated using the density functional theory(DFT) at the B3LYP/6-311 G^** level, and the energies along the MEP were further refined at the QCISD(T)/6-311 G^** level. As a result, the reaction mechanism of the title reaction involves three channels, producing HCS NO and HNC SO products, respectively. Path Ⅰ and path Ⅱ are competitive, with some advantages for path Ⅰ in kinetics. As for path Ⅲ, it looks difficult to react for its high energy barrier. Moreover, the rate constant have been calculated over the temperature range of 8190-2500K using canonical variational transition-state theory (CVT). It was found that the rate constants for both path Ⅰ and path Ⅱ are negatively dependent on temperature, which is similarwith the experimental results for reactions of NCS with NO and NO2, and the variational effect for the rate constant calculation olavs an important role in whole temperature range. 相似文献
6.
7.
《Chemical physics letters》1987,140(3):320-324
The high-intensity laser permits the study of reactions between electronically excited species. The laser irradiation of NO2 generated NO2 by one-photon excitation and O(1D) by two-photon dissociation. These two species react with each other, producing electronically excited NO(A). The product energy distribution was nearly statistical, indicating the possible presence of a long-lived collision complex. 相似文献
8.
The crossed beam reactions of the methylidyne radical with ethylene (CH(X(2)Π) + C(2)H(4)(X(1)A(1g))), methylidyne with D4-ethylene (CH(X(2)Π) + C(2)D(4)(X(1)A(1g))), and D1-methylidyne with ethylene (CD(X(2)Π) + C(2)H(4)(X(1)A(1g))) were conducted at nominal collision energies of 17-18 kJ mol(-1) to untangle the chemical dynamics involved in the formation of distinct C(3)H(4) isomers methylacetylene (CH(3)CCH), allene (H(2)CCCH(2)), and cyclopropene (c-C(3)H(4)) via C(3)H(5) intermediates. By tracing the atomic hydrogen and deuterium loss pathways, our experimental data suggest indirect scattering dynamics and an initial addition of the (D1)-methylidyne radical to the carbon-carbon double bond of the (D4)-ethylene reactant forming a cyclopropyl radical intermediate (c-C(3)H(5)/c-C(3)D(4)H/c-C(3)H(4)D). The latter was found to ring-open to the allyl radical (H(2)CCHCH(2)/D(2)CCHCD(2)/H(2)CCDCH(2)). This intermediate was found to be long lived with life times of at least five times its rotational period and decomposed via atomic hydrogen/deuterium loss from the central carbon atom (C2) to form allene via a rather loose exit transition state in an overall strongly exoergic reaction. Based on the experiments with partially deuterated reactants, no compelling evidence could be provided to support the formation of the cyclopropene and methylacetylene isomers under single collision conditions. Likewise, hydrogen/deuterium shifts in the allyl radical intermediates or an initial insertion of the (D1)-methylidyne radical into the carbon-hydrogen/deuterium bond of the (D4)-ethylene reactant were found to be-if at all-of minor importance. Our experiments propose that in hydrocarbon-rich atmospheres of planets and their moons such as Saturn's satellite Titan, the reaction of methylidyne radicals should lead predominantly to the hitherto elusive allene molecule in these reducing environments. 相似文献
9.
10.
Theoretical studies of the dynamics of the reactions O(3p)+H2/HD(ν=0, j=0)→OH+H have been performed with quasi-classical trajectory method (QCT) on an ab initio potential surface for the lowest triplet electronic state of H2O(aA"). The QCT-calculated integral cross sections are in good agreement with the earlier time-dependent quantum mechanics results. The state-resolved rotational distributions reveal that the product OH rotational distributions for O+HD have a preference for populating highly internally excited states compared with the O+H2 reaction. Distributions of differential cross sections show that directions of scattering are strongly dependent on the choice of quantum state. The polarization dependent generalized differential cross-sections and the distributions were calculated and a pronounced isotopic effect is revealed. The calculated results indicate that the product polarization is very sensitive to the mass factor. 相似文献
11.
Quasi-classical Trajectory Study of F+H2O→HF+OH Reaction: Influence of Barrier Height,Reactant Rotational Excitation,and Isotopic Substitution (cited: 4) 下载免费PDF全文
The reaction dynamics of the F+H2O/D2O→HF/DF+OH/OD are investigated on an ac-curate potential energy surface (PES) using a quasi-classical trajectory method. For bothisotopomers, the hydrogen/deuterium abstraction reaction is dominated by a direct rebound mechanism over a very low “reactant-like” barrier, which leads to a vibrationally hot HF/DF product with an internally cold OH/OD companion. It is shown that the lowered reaction barrier on this PES, as suggested by high-level ab initio calculations, leads to a much better agreement with the experimental reaction cross section, but has little impact on the product state distributions and mode selectivity. Our results further indicate that rotational exci-tation of the H2O reactant leads to significant enhancement of the reactivity, suggesting a strong coupling with the reaction coordinate. 相似文献
12.
Steric effect in the energy transfer reaction of N(2)(A(3)Σ(u)(+)) + NO(X(2)Π) → NO(A(2)Σ(+)) + N(2)(X(1)Σ(g)(+)) has been studied under crossed beam conditions at a collision energy of ~0.07 eV by using an aligned N(2)(A(3)Σ(u)(+)) beam prepared by a magnetic hexapole. The emission intensity of NO(A(2)Σ(+)) has been measured as a function of the magnetic orientation field direction (i.e., alignment of N(2)(A(3)Σ(u)(+))) in the collision frame. A significant alignment effect on the energy transfer probability is observed. The shape of the steric opacity function turns out to be most reactive at the oblique configuration of N(2)(A(3)Σ(u)(+)) with an orientation angle of γ(v(R)) ~ 45° with respect to the relative velocity vector (v(R)), which has a good correlation with the spatial distribution of the 2pπ(g)* molecular orbital of N(2)(A(3)Σ(u)(+)). We propose the electron exchange mechanism in which the energy transfer probability is dominantly controlled by the orbital overlap between N(2)(2pπ(g)*) and NO(6σ). 相似文献
13.
The kinetics of H2S destruction in the radiolysis of CH4–H2S and CH4–H2S–O2 mixtures has been studied. It has been shown that G(–H2S) depends on amounts of hydrogen sulfide and the presence of oxygen in the starting mixture and is within the range of 5–13 mol/100 eV. G(H2) decreases with the increases of O2 content and amounts to the constant value of 2. 相似文献
14.
Structural Chemistry - Boronic acids, R–B(OH)2, play an important role in synthetic, biological, medicinal, and materials chemistry. Borinic acids, R–BH(OH), find relevance in similar... 相似文献
15.
《Chemical physics》1987,112(3):409-413
Rate constants over the temperature range 298–689 K are reported for the reaction of CH(X2Π) radicals with C3H8, i-C4H10 and neo-C5H12. The CH radical was generated by multiphoton laser photolysis of CHBr3 and its disappearance monitored by laser-induced fluorescence (LIF) at 429.8 nm. Absolute rate constants were determined as a function of temperature and total pressure. The following Arrhenius parameters were derived: k = (1.85 ± 0.13) × 10−10 exp[(240±30)/T] cm3/s for CH+propane; k = (2.03±0.19)×10−10 exp[(240±40)/T] cm3/s for CH+isobutane; k = (1.61±0.10)×10−10 exp[(340±30)/T] cm3/s for CH+neopentane, all independent of total pressure. The negative temperature dependences along with the energetics and lack of pressure effects lead to the conclusion that the reactions proceed by CH insertion into the alkane. The activated adduct thus formed rapidly decomposes via many energetically accessible channels. An analysis of CH reactions with C1 to C5 alkanes shows an increase in the room temperature rate constants in going from C1 to C4 irrespective of the nature of CH bonds. The rate constant then begins to level off near ≈ 5 × 10−10 cm/s for C4 and C5 alkanes. 相似文献
16.
The dynamics of the NH + H→N+H2 reaction has been investigated by means of the 3D quasiclassical trajectory approach by using the LEPS potential energy surface.The calculated rate coefficient is in good agreement with the experimental value.The reaction was found to occur via a direct channel.The product H2 has a cold excitation of rotational state,but has a reverse distribution of the vibrational state with a peak at v=1.Based on the potential energy surface and the trajectory analysis,the reaction mechanism has been explained successfully. 相似文献
17.
18.
A Study on the Kinetics of the Catalytic Reforming Reaction of CH4 with CO2: Determination of the Reaction Order 下载免费PDF全文
ChunyangJi LihongGong JiaweiZhang KeyingShi 《天然气化学杂志》2003,12(3):201-204
The kinetics of the catalytic reforming reaction of methane with carbon dioxide to produce synthesis gas on a Ni/(α-A1203 and a HSD-2 type commercial catalyst has been studied. The results indicate that the reaction orders are one and zero for methane and carbon dioxide, respectively, when the carbon dioxide partial pressure was about 12.5-30.0 kPa and the temperature was at 1123-1173 K. However, when the carbon dioxide partial pressure was changed to 30.0-45.0 kPa under the same temperature range of 1123-1173 K, the reaction orders of methane and carbon dioxide are one. Furthermore, average rate constants at different temperatures were determined. 相似文献
19.
《Chemical physics》1987,112(3):363-372
A spectroscopic characterization of a N2 radiofrequency discharge and N2CO post discharge has been performed. The relative vibrational distribution of the excited B 3Πg and C 3Πu states of nitrogen and their correlation with the ground state have been analyzed. The analysis confirms the importance of the metastable molecules. N2(A 3Σ+u), in affecting the vibrational distribution of nitrogen in its ground state in the discharge and post discharge. The vibrational analysis of the CO ground state, excited in the post discharge by vibrationally excited N2 molecules, confirms the high degree of vibrational non-equilibrium in the ground state of nitrogen, in the presence of a low first-level vibrational temperature. 相似文献
20.
Gubbels KB Ma Q Alexander MH Dagdigian PJ Tanis D Groenenboom GC van der Avoird A van de Meerakker SY 《The Journal of chemical physics》2012,136(14):144308
We present detailed calculations on resonances in rotationally and spin-orbit inelastic scattering of OH (X(2)Π, j = 3/2, F(1), f) radicals with He and Ne atoms. We calculate new ab initio potential energy surfaces for OH-He, and the cross sections derived from these surfaces compare well with the recent crossed beam scattering experiment of Kirste et al. [Phys. Rev. A 82, 042717 (2010)]. We identify both shape and Feshbach resonances in the integral and differential state-to-state scattering cross sections, and we discuss the prospects for experimentally observing scattering resonances using Stark decelerated beams of OH radicals. 相似文献