首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
Analysis by total-reflection X-ray fluorescence (TXRF) is unsuitable for determining mercury concentrations because the usual sample preparation produces evaporation and loss of this element as a consequence of its high vapour pressure and low boiling point.A method that has been developed to achieve this determination involves forming an amalgam while a thin layer of silver (obtained by sputtering or evaporation) is in contact with an ionic solution of Hg; subsequently, a traditional TXRF analysis is performed. This was the first method reported in the literature to apply the TXRF technique for reliably determining mercury concentrations with high sensitivity.This work shows how a similar procedure may be employed to measure mercury concentrations. This second method involves forming an amalgam of gold using microlitre quantities of the solution to be analysed. As gold is a highly malleable material, it allows the production of very thin films, the weight of which is a few orders of magnitude higher than the mass of mercury present in the amalgam. The determination is performed in the usual way using the TXRF technique. The sensitivity of this method (≈ 5 ppm) is inferior to that of the former method, and data processing is quite difficult because the peaks for mercury and gold overlap, but the experiment is simple to execute and improved sensitivity is expected to be attained by forming the amalgam with larger volumes of sample and with a more responsive data processing scheme.  相似文献   

2.
We have been working on mercury collection from flue gas by amalgamation and subsequent XRF analysis. Previous results showed unexpectedly high relative standard deviation (30%) in collection efficiency when silver-coated filters were exposed to gas phase mercury in a pilot-scale test chamber. Filters were analyzed by micro-XRF, TXRF and conventional XRF to explore the source of scattering. It was concluded that mercury had inhomogeneously adsorbed in the filter as the cause of this variation, leading to a positive bias of 50% in efficiency value. Results reported in this paper suggest the TXRF method is accurate to within ±10% when X-ray counting statistics are not the limiting factor. Application of this filter in flue gas measurement will be presented.  相似文献   

3.
This work presents the first application of the total-reflection X-ray fluorescence (TXRF) to the compositional study of magnetic ferrofluids. With the aims of validating the best analytical conditions and also, limitations of the TXRF in the compositional study of these materials, an alternative empirical method, based in the use of angle-dependence TXRF (AD-TXRF) measurements, is proposed. Three kinds of ferromagnetic nanoparticles, with different morphologies, have been studied. The techniques of inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES) have been used to validate the TXRF results. In contrast with the plasma techniques, the developed TXRF procedure need not of previous chemical acid digestion. Additionally, two procedures of magnetic nanoparticles synthesis, co-precipitation and laser-pyrolysis, have been checked for the contaminants trace metals Zn, Mn and Cr. It has been found that the method of laser-pyrolysis produces nanoparticles of higher purity.  相似文献   

4.
Quartz reflectors are a common substrate for total reflection X-ray fluorescence (TXRF) analysis. Especially low masses of trace elements can be determined on these surfaces. In the present work, various complexing reagents were immobilized on the surface of quartz reflectors. The reflectors were immersed in mercury solutions and selective mercury collection took place. The effect of immersion time was examined and a few minutes were found adequate. The reflectors were analysed for mercury by TXRF. Different complexing reagents showed different collection capabilities; 4-(2-pyridazo-resorcinol) gave the best among them. The effect of various experimental parameters was examined like pH, interferences from other ions, etc. Mercury speciation was successfully tested by comparing inorganic mercury results with the methyl mercury ones. A very good selectivity for inorganic mercury was found. It was achieved very good linearity in the 1-500 ng mL−1 mercury concentration range and the minimum detection limit was equal to 2.5 ng mL−1.  相似文献   

5.
An electrolytic separation and enrichment technique was developed for the determination of trace elements by total-reflection X-ray fluorescence spectroscopy (TXRF). The elements of interest are electrodeposited out of the sample solution onto a solid, polished disc of pure niobium which is used as sample carrier for the TXRF measurement. The electrochemical deposition leads to a high enrichment of the analytes and at the same time to a removal of the matrix. This results in substantially improved detection limits in the lower picogram per gram region. The deposited elements are directly measured by TXRF without any further sample preparation step. The homogeneous thin layer of the analytes is an ideal sample form for TXRF, because scattered radiation from the sample itself is minimized. The proposed sample preparation method is useful particularly for the analysis of heavy metals in liquid samples with for TXRF disturbing matrices, e.g. sea water.  相似文献   

6.
A newly developed, portable total reflection X-ray fluorescence (TXRF) spectrometer was tested during a field campaign on Chilean lakes and a German river in January 2002. The field measurements were compared with laboratory measurements carried out on a stationary instrument in the German laboratory. For method validation certified reference material (NIST SRM 1640 Trace elements in natural water) and water samples from different freshwater sources were analyzed with both techniques and evaluated statistically. Based on these preliminary results, it could be concluded that the portable TXRF is a useful technique for the quantitative elemental screening of freshwater samples during field campaigns. Future tests with biological samples (e.g. biofilms and zooplankton), and suspended matter will provide information about the suitability of the portable TXRF for these materials.  相似文献   

7.
Total-reflection X-ray fluorescence (TXRF) is widely used for the control of metallic contamination caused by surface preparation processes and silicon materials. At least three companies supply a variety of TXRF systems to the silicon integrated circuit (IC) community, and local calibration of these systems is required for their day to day operation. Differences in local calibration methods have become an issue in the exchange of information between IC manufacturers' different FABs (Fabrication Facility) and also between silicon suppliers and IC FABs. The question arises whether a universal set of fluorescence yield curves can be used by these different systems to scale system sensitivity from a single element calibration for calculation of elemental concentrations. This is emphasized by the variety of experimental conditions that are reported for TXRF data (e.g. different angles of incidence for the same X-ray source, different X-ray sources, etc.). It appears that an instrumental factor is required. We believe that heavy ion backscattering spectrometry (HIBS) provides a fundamental method of calibrating TXRF reference materials, and can be used in calculating this instrumental factor. In this paper we briefly describe the HIBS system at the Sandia National Laboratories HIBS User Facility and its application to the calibration of TXRF reference materials. We will compare HIBS and TXRF mapping capabilities and discuss the issues associated with the restrictions of some older TXRF sample stages. We will also discuss Motorola's cross-calibration of several TXRF systems using different elements as references.  相似文献   

8.
建立了微波消解前处理,全反射X射线荧光法(TXRF)同时测定松花粉中K、Ca、Ti、Mn、Fe、Ni、Cu、Zn和Rb9种生命元素含量的分析方法.松花粉原料经过微波消解前处理后,采用全反射X射线荧光光谱净计数、QXAS分析软件解谱和单一内标法进行定量分析.比较了干灰化法、湿消解法和微波消解法3种前处理方法的效果,并确立微波消解法作为样品前处理方法.用微波消解- TXRF法测定了花粉标准物质中的上述9种元素,并计算得到其仪器检出限(LLD)为0.002~0.054 mg/L,方法检出限(LDM)为0.004~0.122 mg/kg.TXRF法测定各元素的相对标准偏差(RSDs)为1.0%~5.5%.该方法操作简单、样品用量少、检出限低,对实际样品松花粉的测定结果与ICP - MS法无显著性差异.  相似文献   

9.
An analysis methodology for the metallic contamination control of Ge wafer substrates has been developed and evaluated for six elements (K, Ca, Cr, Fe, Ni and Zn). Detection limits (DL) of Direct-total reflection X-ray fluorescence spectrometry (D-TXRF) analysis on Ge wafers have been determined and found to be at the E10 at/cm2 level. The values have been found to be a factor between 1 and 3 higher than on Si wafers, exclusively caused by differences in the background intensity. Additionally, a preconcentration procedure based on the Droplet sandwich etch (DSE) method has been developed. This method relies on the transfer of the surface and subsurface contaminants from the wafer to the liquid phase by wet chemical etching. Application of the DSE method on reference Ge wafers followed by analysis of the etch liquid by TXRF resulted in recovery rates (RR) of 40%. In an optimization study, it was found that the main DSE method parameters had limited influence on the RR. However, a detection efficiency study clearly demonstrated an underestimation by the TXRF analysis. An independent analysis for Ca, Cr, Fe and Zn by GF-AAS resulted in RR varying at approximately 100%. By internal standardization with the element La for the TXRF analysis, recovery rates could be increased to the 60% level. This underestimation by TXRF may find an origin in a matrix effect caused by the Ge etch products. By application of the developed DSE-TXRF method, DL at the E9 at/cm2 level could be realized, with values, which are at least one order of magnitude lower compared to the DL of D-TXRF on Ge wafers.  相似文献   

10.
Two new preparation techniques for total-reflection X-ray fluorescence (TXRF) element determination of single freshwater crustacean specimens (dry weight: 3–40 μg ind−1) have been developed and tested using Daphnia pulex from a deep, oligotrophic freshwater lake located in southern Chile. Dry method: Specimens were washed with 0.2 μm filtered lake water and frozen in liquid nitrogen. The freeze-dried Daphnia specimens were weighed using an ultra-fine microbalance and placed on quartz glass carriers for TXRF analysis. Wet method: Specimens were washed with 0.2 μm filtered lake water and placed on quartz glass carriers for TXRF analysis and dried in air. The dry weight was determined using the previously established body length–dry weight relationship. Method validation for both the dry and the wet preparation method in combination with TXRF spectrometry for the element determination in small single freshwater crustaceans showed that both methods can be used for routine investigations. There were no significant differences between the dry and the wet methods concerning the elements Ca, K, Fe, Zn, Br, P, Cu, but the determination of Mn, S and Sr revealed significant differences between the two methods. It seems that the dry method yields more precise results, but the wet method is easier to handle in the field when samples cannot be fixed with liquid nitrogen.  相似文献   

11.
Ge substrates are recently being reconsidered as a candidate material for the replacement of Si substrates in advanced semiconductor devices. The reintroduction of this material requires reengineering of the standard IC processing steps. In this paper, we present the extension of the methodology of vapor phase decomposition–droplet collection–total reflection X-ray fluorescence spectrometry (VPD–DC–TXRF) for metallic contamination analysis towards Ge substrates. A first step that asked for adaptation was the collection chemistry as the Ge wafers surface is not hydrophobic after the VPD treatment. The contact angle could be significantly increased using a concentrated HCl solution. This chemistry has been proved to perform well in the collection of metals from intentionally contaminated Ge wafers. A second step that needed optimization was the matrix removal method as a sample preparation step prior to the TXRF analysis. First, the upper limits of TXRF on Ge containing solutions have been characterized. The accuracy of TXRF is found to be acceptable for Ge contents lower than 1×1014 atoms (250 ppb in 50 μL) but decreases systematically with higher Ge contents. Fortunately, Ge can be volatilized at low temperatures as GeCl4 by the addition of HCl. The parameters within this method have been investigated with respect to the removal of Ge and the recovery of metal traces. Finally, the full VPD–DC–TXRF method has been applied on intentionally contaminated Ge wafers and proved to be very accurate.  相似文献   

12.
A radiochemical neutron activation analysis method has been developed based on pyrolysis followed by double gold amalgamation for the determination of mercury in solid samples. Accurate results were obtained for mercury in six standard reference materials of varying matrices, including coal. Linearity was demonstrated up to mercury concentrations of 10,000 ng/g. The method is capable of yielding precise, reproducible values with a detection limit of 5 ng/g for mercury in coal.  相似文献   

13.
Total reflection X-ray fluorescence spectrometry (TXRF) is presented as a genuine surface analytical technique. Its low information depth is shown to be the characteristic feature differentiating it from other energy dispersive X-ray fluorescence methods used for layer and surface analysis. The surface sensitivity of TXRF and its analytical capability together with the limitations of the technique are discussed here using typical applications including the contamination control of silicon wafers, thin layer analysis and trace element determination. For buried interfaces and implantation depth profiles in silicon a combination of TXRF and other techniques has been applied successfully. The TXRF method has the particular advantage of being calibrated without the need for standards. This feature is demonstrated for the example of the element arsenic.  相似文献   

14.
 The actual detection limits of total reflection X-ray fluorescence (TXRF) are determined and compared to those of destructive physical analytical methods like secondary ion mass spectrometry (SIMS) and chemical methods like vapour phase decomposition in combination with inductively coupled plasma-mass spectrometry (VPD-ICP-MS). The elements Ca, Ti, Cr, Fe, Cu were analyzed on a Si wafer with 10 nm thermal oxide using TXRF and VPD-ICP-MS. The deviation of the TXRF and the VPD-ICP-MS results is less than 30%. The thickness, composition and density of a Co/Ti two-layer stack were determined using angle dependent total reflection and grazing incidence X-ray fluorescence (A-TXRF). The obtained data were compared with X-ray reflectometry (XRR) and energy filtered transmission electron microscopy (EFTEM). The agreement between TEM and A-TXRF is excellent for the determination of the thickness of the metal layers. From these results we conclude, that A-TXRF permits the accurate determination of composition, thickness and density of thin metallic layers. The results are discussed regarding detection efficiency, acquisition time, accuracy and reproducibility.  相似文献   

15.
Experiments have been carried out using total reflection X-ray fluorescence (TXRF) to determine the location of arsenic cross-contamination on or in silicon and silicon oxide, respectively, caused during argon-implantation. TXRF has been applied at varying angles of incidence — the so-called angle scan mode. By comparing the angle scan curves of implanted samples with those of a wafer, spin-coated with arsenic, at which arsenic is certainly located on top of the silicon surface, clear differences are observed. This indicates the presence of arsenic embedded in the subsurface. These observations are confirmed by Rutherford backscattering measurements, by modeling As-implantation profiles for low implantation energies as well as by step-by-step oxide etching followed by standard TXRF analysis. This fast and non-destructive application of TXRF angle scan appears a useful method for qualitative depth profiling.  相似文献   

16.
Total Reflection X-ray Fluorescence (TXRF) is a well-established technique for chemical analysis, but it is mainly employed for quality control in the electronics semiconductor industry. The capability to analyze liquid and uniformly thin solid samples makes this technique suitable for other applications, and especially in the very critical field of environmental analysis. Comparison with standard methods like inductively coupled plasma (ICP) and atomic absorption spectroscopy (AAS) shows that TXRF is a practical, accurate, and reliable technique in occupational settings. Due to the greater sensitivity necessary in trace heavy metal detection, TXRF is also suitable for environmental chemical analysis. In this paper we show that based on appropriate standards, TXRF can be considered for non-destructive routine quantitative analysis of environmental matrices such as air filters. This work has been developed in the frame of the EU-FP6 PHIME (Public Health Impact of long-term, low-level Mixed element Exposure in susceptible population strata) Integrated Project (www.phime.org). The aim of this work was to investigate Mn air pollution in the area of Vallecamonica (Italy).  相似文献   

17.
The results of a numerical simulation, performed to check the validity of a method developed for reconstruction of concentration distributions truncated by the detection limit, are reported in the context of trace element analysis in biomedical samples by total-reflection X-ray fluorescence. This method, by correcting a distribution over the whole range of concentrations in a population of samples, restores a number of measurements reporting results below the detection limit. We show by Monte Carlo simulations, assuming lognormal distributions to describe both the concentrations measured as well as the detection limits in the biomedical samples, that the method developed is accurate to within 5% for most typical situations. Moreover, we demonstrate that the factor limiting the accuracy of the correction is the number of measurements, not the correction procedure itself. We have found in simulations that the reconstruction of a concentration distribution, for a typical population size of N=100, is possible when the concentrations are measured only in 20–30% of samples. On the other hand, we show that by ignoring the truncation of a concentration distribution by the detection limit, the results can be systematically biased by as much as 50%. The method developed is applied to the analysis of trace elements in human breast tissue samples by total-reflection X-ray fluorescence (TXRF). The results are also discussed in terms of the size of the population studied.  相似文献   

18.
We have modified the surfaces of glass and Si(100) with 3-aminopropyltrimethoxy silane, a fourth generation amine-terminated poly(amidoamine) dendrimer, and poly(diallydimethyl ammonium chloride) to facilitate adsorption onto colloidal gold particles (average diameter 3, 5, 12, and 22 nm). UV-vis absorption spectroscopy and atomic force microscopy monitored the adsorption process, which is governed by particle diffusion to the surface. The differences in adsorption to the three adhesion layers as a function of pH are discussed. Mercury vapor was exposed to the gold particle films and quantified by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy. The surface plasmon oscillation of 5-, 12-, and 22-nm particles blue-shifts after exposure to parts-per-million levels of mercury vapor in air. Particle films prepared from the 3-nm gold particles develop a broad peak centered near 530 nm after exposure to mercury vapor. The results demonstrate a novel "litmus" film for mercury vapor.  相似文献   

19.
In this paper we present a procedure allowing total-reflection X-ray fluorescence spectrometry (TXRF) determinations of arsenic in water samples, especially in seawater samples. The procedure consists of an arsenate reduction step (performed by using a l-cysteine solution) followed by a complexation of As+3 with sodium dibenzyldithiocarbamate and solid phase extraction. The new procedure is a modification of a method developed by Prange and allows a simultaneous determination of As together with V, Fe, Ni, Cu, Zn, Pb, and U in seawater by TXRF. The procedure was tested using the Certified Reference Material CASS-4 and was later applied to regular seawater samples collected from the North Sea. The detection limit for arsenic is 10 ng L− 1.  相似文献   

20.
A simple formula has been developed that allows the calculation of the background contributed by the substrate in TXRF both exactly and in absolute terms. The scattered X-radiation from any surface is described as a function of the incidence angle and of the X-ray cross sections for scattering and total absorption of the substrate material. The formula has been confirmed experimentally for silicon, acryl and gold. Measured and calculated values agree within reasonable limits. The deviations between predicted and measured data decrease with increasing angle of incidence from up to 20% in the low angle regime down to a few percent beyond the critical angle of total reflection as a result of the decreasing influence of surface roughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号