首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anionically charged fluorescent conjugated polyelectrolytes of poly{[4,7‐(2,1,3‐benzothiadiazole)‐alt‐1,4‐phenylene]‐co‐[2,5‐bis(4‐sulfonatobutoxy)‐alt‐1,4‐phenylene]} ( P1 ) and poly{[4,7‐(bis(thiophen‐2‐yl)benzo‐2,1,3‐thiadiazole)‐alt‐1,4‐phenylene]‐co‐[2,5‐bis(4‐sulfonatobutoxy)‐alt‐1,4‐phenylene]} ( P2 ) were synthesized by Suzuki crosscoupling polymerization in the presence of a palladium catalyst. The conjugated polyelectrolytes with sulfonate groups, as efficient signal amplifying reporters, were carefully designed to be soluble in water over the entire pH range examined and interact with proteins through intermolecular forces. The polymers exhibited blue emission in aqueous solutions but green or red emission in solid form depending on the conjugation length due to intermolecular exciton migration. The anionic conjugated polymers exhibited blue‐to‐green or blue‐to‐red changes in fluorescence upon exposure to charged proteins, indicating that the polymers have potential applications in fluorescent array systems for protein. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
A two-dimension medium band gap copolymer poly{5,10-bis(4,5-didecylthien-2-yl)dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-2,7-diyl-alt-2,5-di(3-octylthien-2-yl) thiophen-5,5′-diyl}, named as PDTBDT-T-3T, was prepared by the palladium-catalyzed Stille cross coupling reaction and characterized. The resulting polymer exhibits good solubility in common organic solvents, excellent thermal stability, and extensive light absorption from 300 nm to 650 nm with an optical band gap of 1.92 eV, the highest occupied molecular orbital (HOMO) level of ?5.03 eV and the hole mobility up to 1.92 × 10?4 cm2·V?1·s?1. The power conversion efficiencies (PCEs) of 2.02%–3.19% have been achieved in the traditional PVCs for the copolymer. It should be noted that the PCEs of 4.2% for the inverted PVCs from the copolymer with PFN (poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl- fluorene)]) as cathode modifying interlayer, were similar with the PCEs of 4.39% for the inverted PVCs from P3HT:PC71BM at the same condition. These results indicated that the copolymer could be used as potential candidate for P3HT.  相似文献   

3.
Sodium salts of water‐soluble polymers poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(hexyloxy)‐1,4‐phenylene]} ( P1 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dodecyloxy)‐1,4‐phenylene]} ( P2 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dibenzyloxy)‐1,4‐phenylene]} ( P3 ), poly[2‐hexyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P4 ), and poly[2‐dodecyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P5 )] were synthesized with Suzuki coupling reactions and fully characterized. The first group of polymers ( P1 – P3 ) with symmetric structures gave lower absorption maxima [maximum absorption wavelength (λmax) = 296–305 nm] and emission maxima [maximum emission wavelength (λem) = 361–398 nm] than asymmetric polymers P4 (λmax = 329 nm, λem = 399 nm) and P5 (λmax = 335 nm, λem = 401 nm). The aggregation properties of polymers P1 – P5 in different solvent mixtures were investigated, and their influence on the optical properties was examined in detail. Dynamic light scattering studies of the aggregation behavior of polymer P1 in solvents indicated the presence of aggregated species of various sizes ranging from 80 to 800 nm. The presence of alkoxy groups and 3‐sulfonatopropoxy groups on adjacent phenylene rings along the polymer backbone of the first set hindered the optimization of nonpolar interactions. The alkyl chain crystallization on one side of the polymer chain and the polar interactions on the other side allowed the polymers ( P4 and P5 ) to form a lamellar structure in the polymer lattice. Significant quenching of the polymer fluorescence upon the addition of positively charged viologen derivatives or cytochrome‐C was also observed. The quenching effect on the polymer fluorescence confirmed that the newly synthesized polymers could be used in the fabrication of biological and chemical sensors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3763–3777, 2006  相似文献   

4.
Two novel alternating copolymers, poly{9,9‐dihexylfluorene‐2,7‐diyl‐alt‐2,5‐dioctyl‐3,6‐bis(4‐phenyl)pyrrolo[3,4‐c] pyrrole‐1,4‐dione} ( P1 ) and poly{9,9‐dihexylfluorene‐2,7‐diyl‐alt‐2,5‐dioctyl‐3,6‐bis(3‐phenyl)pyrrolo[3,4‐c] pyrrole‐1,4‐dione} ( P2 ), derived from 9,9‐dihexylfluorene and diketopyrrolopyrrole (DPP), have been successfully synthesized through palladium‐catalyzed Suzuki polycondensation in good yields. P1 and P2 possess moderate molecular weights and polydispersities, well‐defined structures, and excellent thermal properties with an onset decomposition temperature around 400 °C. Both P1 and P2 in thin films exhibit red photoluminescence from DPP species exclusively, with peaks at 609 and 616 nm, respectively. Cyclic voltammetry studies show that P1 and P2 have low‐lying lowest unoccupied molecular orbital energy levels at ?3.65 eV and reversible reduction processes, so these polymers may constitute another kind of red‐emitting polymer with high electron affinity. Preliminary electroluminescent results of devices with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Ba/Al configuration reveal that P1 may be a promising candidate for red emitters with a maximum brightness of 153 cd/m2 and a maximum external quantum efficiency of 0.13%, whereas the performance of P2 is relatively poor. These differences might originate from different conjugation lengths in their main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2395–2405, 2006  相似文献   

5.
Two new blue light-emitting polymers, poly{[2,5-bis(4-phenylene)-1,3,4-oxadiazole]-[9,9-dihexylfluorene-2,7-diyl]-[N-(4-(9H-carbazol-9-yl)phenyl)-N,N-bis(p-phenylene)aniline]} (POFPA) and poly{[2,5-bis(4-phenylene)-1,3,4-oxadiazole]-[9,9-dihexylfluorene-2,7-diyl]-[4-(3,6-(di-9H-carbazol-9-yl)-9H-carbazol-9-yl)-N,N-bis(p-phenylene)-aniline]} (POFCPA), were synthesized by Suzuki coupling reactions. By GPC analysis against a linear polystyrene standard POFPA and POFCPA were found to have Mn of 1.68 × 104 and 3.70 × 103, respectively. In contrast to POFPA, the main absorption peak of POFCPA in dilute toluene solution was blue-shifted by Δλ = 26 nm owing to its backbone of relatively shorter π-conjugation length and more carbazole units in side chain. The absolute fluorescence quantum yield (Φf) of POFCPA in dilute toluene solution was determined as 73%, much higher than that of POFPA (Φf  58.9%) measured under the same conditions. An electroluminescence device based on POFCPA displays a stable blue emission having color coordinates of (0.15, 0.20), a maximum brightness of 4762 cd/m2, and a maximum current efficiency of 1.79 cd/A. By using this polymer as the host material doped with 1 wt.% 4,4′-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl, the achieved highest brightness, maximum current efficiency and maximum power efficiency are 13,613 cd/m2, 3.38 cd/A, and1.84 lm/W, respectively.  相似文献   

6.
All-polymer solar cells based on blends of the low band gap polymers poly{[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]} (PTB7) and poly{[N,N-9-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,59-(2,29-bithiophene)} (P(NDI2OD-T2)) are demonstrated. The use of the donor polymer PTB7 instead of poly(3-hexylthiophene) results in a higher open-circuit voltage and an overall spectral response better matched to the solar spectrum. A power conversion efficiency of 1.1% is reported with a peak external quantum efficiency of 18% at a wavelength of 680 nm. The microstructure of PTB7:P(NDI2OD-T2) blends is also investigated using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS), near-edge X-ray fine-structure (NEXAFS) spectroscopy, atomic force microscopy (AFM), and scanning transmission X-ray microscopy (STXM). GIWAXS measurements show that PTB7:P(NDI2OD-T2) blends contain P(NDI2OD-T2) crystallites with a (100) thickness of 9.5 nm dispersed in an amorphous PTB7 matrix. STXM measurements indicate a lack of mesoscale phase separation, with AFM and NEXAFS measurements revealing a P(NDI2OD-T2)-rich top surface with fibrillar morphology. These results indicate that the pairing of low band gap polymers as both donor and acceptor polymers in all-polymer solar cells may be an effective strategy for realizing high-efficiency all-polymer solar cells. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

7.
颜河  赵达慧 《高分子科学》2017,35(2):293-301
Four polymers based on perylenediimide co-polymerized with thiophene, bithiophene, selenophone and thieno[3,2-b]thiophene were investigated as the acceptor materials in all-polymer solar cells. Two different donor polymers, poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2,6-diyl](PTB7-Th) and poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′′′-di(2-dodecyltetradecyl)-2,2′;5′,2″;5″,2′′′-quaterthiophen-5,5′′′-diyl)](Pff BT4T-2DT), with suitably complementary absorption spectra and energy levels were applied and examined. Among all different donor-acceptor pairs studied here, the combination of PTB7-Th:poly[N,N′-bis(1-hexylheptyl)-3,4,9,10-perylenediimide-1,6/1,7-diyl-alt-2,5-thiophene](PDI-Th) exhibited the best power conversion efficiency(PCE) of 5.13%, with open-circuit voltage(V_(oc)) = 0.79 V, short-circuit current density(J_(sc)) = 12.35 mA·cm~(-2) and fill-factor(FF) = 0.52. The polymer of PDI-Th acceptor used here had a regio-irregular backbone, conveniently prepared from a mixture of 1,6- and 1,7-dibromo-PDI. It is also noteworthy that neither additive nor posttreatment is required for obtaining such a cell performance.  相似文献   

8.
A novel series of thiazolothiazole (Tz)‐based copolymers, poly[9,9‐didecylfluorene‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P1), poly[9,9‐dioctyldibenzosilole‐2,7‐diyl‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P2), and poly[4,4′‐bis(2‐ethylhexyl)‐dithieno[3,2‐b:2′,3′‐d]silole‐alt‐2,5‐bis‐(3‐hexylthiophene‐2‐yl)thiazolo[5,4‐d]thiazole] (P3), were synthesized for the use as donor materials in polymer solar cells (PSCs). The field‐effect carrier mobilities and the optical, electrochemical, and photovoltaic properties of the copolymers were investigated. The results suggest that the donor units in the copolymers significantly influenced the band gap, electronic energy levels, carrier mobilities, and photovoltaic properties of the copolymers. The band gaps of the copolymers were in the range of 1.80–2.14 eV. Under optimized conditions, the Tz‐based polymers showed power conversion efficiencies (PCEs) for the PSCs in the range of 2.23–2.75% under AM 1.5 illumination (100 mW/cm2). Among the three copolymers, P1, which contained a fluorene donor unit, showed a PCE of 2.75% with a short‐circuit current of 8.12 mA/cm2, open circuit voltage of 0.86 V, and a fill factor (FF) of 0.39, under AM 1.5 illumination (100 mW/cm2). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Supramolecular complexes of single-walled carbon nanotubes (SWNTs) with poly(9,9-didodecylfluorene-2,7-diyl) (PF) derivatives were prepared using a solution dispersion process. A series of novel conjugated PF polymers with carboxyl or hydroxyl end groups at both ends were synthesized by the Yamamoto-type coupling of 2,7-dibromo-9,9-didodecylfluorene using Ni(COD)2 as a catalyst, and further end-capped with either 4-bromobenzoic acid or 4-bromobenzyl alcohol to obtain the end-functionalized PF with different terminal groups. An α-monocarboxy-ω-mono-methoxy poly(ethylene glycol) was connected to both ends of the PF-containing hydroxyl end groups to produce triblock copolymers of poly(ethylene glycol)-b-polyfluorene-b-poly(ethylene glycol) (PEO-b-PF-b-PEO). These SWNTs were completely wrapped with the conjugated polymers through π–π interactions, which enhanced the solubility of the SWNT complexes in organic media, and prevented the aggregation of the polymer–SWNT complexes into large bundles. This indicates that the dispersion stability of SWNTs is enhanced by the addition of the conjugated polymers.  相似文献   

10.
Two novel diketopyrrolopyrrole-based alternating copolymers, poly(2,7-(9,9-diethyl)-fluorenylvinylene-alt-2,5-bis(4′-octyloxyphe- nylmethyl)-3,6-bis(4-vinylenephenyl)pyrrolo[3,4-c]pyrrole-1,4-dione) (P1) and poly(1,4-(2,5-dioctyl- oxy)-phenylenevinylene-alt-2,5-bis(4′-octyloxyphenylmethyl)-3,6-bis(4-vinylenephenyl)pyrrolo[3,4-c]pyrrole-1,4-dione) (P2) were synthesized through Wittig polycondensation in good yields. P1 and P2 were characterized by NMR, FT-IR, UV-Vis, photoluminescence (PL) and electroluminescence (EL). EL devices with ITO/PEDOT/polymer/CsF/Al exhibited red-emitting light with the maximum EL wavelength at 620 nm and 682 nm. The results show that PL quantum yield of the polymers in thin film can be improved through N-alkylation of diketopyrrolopyrrole (DPP) with bulky substituent. EL performance of P2 was better than P1, which might be due to 1,4-dioctyloxybenzene of P2 enhancing the hole-transporting to make more charge balance. EL devices of P1 and P2 possessed low turn on voltage (2.4 V and 2.1 V, respectively), which was an advantage for PLED.  相似文献   

11.
杨丽封继康  任爱民 《中国化学》2007,25(10):1491-1498
One of the drawbacks of the electroluminescence (EL) polymers is that they are usually much better at accepting and transporting holes than electrons due to their inherent richness of π-electrons. One approach improving electron injection and transport in conjugated polymers is to incorporate moieties with high electron affinities. In this theoretical work, to gain an insight into the chemical structure-property relationships was aimed by controllable modification of the main chain structures. Two cyanovinylene derivatives with 2,7-fluorenylene and p-phenylene moieties in the main chains, namely, poly { (2,5-dimethoxy-p-phenylene- 1,4-ylene)-alt-[ 1,2-bis(p-phenylene)- 1- cyanovinylene]} (PPhCN) and poly{[9,9-dimethyl-2,7-fluorenylene]-alt-[1,2-bis(p-phenylene)-1-cyanovinylene]} (PFCN), were studied employing density functional theory (DFT) and time dependent density functional theory (TD-DFT) with B3LYP functional. The electronic properties of the neutral molecules, extrapolated ionization potentials (IP) and electron affinities (EA), and energy gaps were investigated in comparison with pristine poly(2,7- fluorenylene). From comparison with poly(2,7-fluorenylene) (PF), the 1,2-bis(p-phenylene)-1-cyanovi-nylene unit was found to be a good electron-withdrawing moiety for electronic materials and the incorporation of 1,2-bis(p- phenylene)-1-cyanovinylene resulted in a narrow band gap and a red shift of both the absorption and photoluminescence emission peaks. Most importantly, the LUMO energies of PFCN are around 1 eV lower than those of PF, which results in the decrement of EA about 0.9 eV, indicating that the 1,2-bis(p-phenylene)-1-cyanovinylene unit has significantly improved the electron-accepting properties of the copolymer PFCN. Substitution of 2,5-dimethoxy-p-phenylene for 9,9-dimethyl-2,7-fluorenylene induced larger band gaps and thus a blue-shift in absorption and emission peaks, which can be attributed to the better conjugated backbone in PFCN.  相似文献   

12.
Three novel fluorene‐containing poly(arylene ethynylene)s with amino‐functionalized side groups were synthesized through the Sonogashira reaction. They were poly{9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene}‐altco‐{2,5‐bis[3′‐(N,N‐diethylamino)‐1′‐oxapropyl]‐1,4‐phenylene} ( P1 ), poly{9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene} ( P2 ), and poly({9,9‐bis[6′‐(N,N‐diethylamino)hexyl]‐2,7‐fluorenylene ethynylene}‐altco‐(1,4‐phenylene)) ( P3 ). Through the postquaternization treatment of P1 – P3 with methyl iodide, we obtained their cationic water‐soluble conjugated polyelectrolytes (WSCPs): P1′ – P3′ . The water solubility was gradually improved from P3′ to P1′ with increasing contents of hydrophilic side chains. After examining the ultraviolet–visible absorption and photoluminescence (PL) spectra, fluorescence lifetimes, and dynamic light scattering data, we propose that with the reduction of the water solubility from P1′ to P3′ , they exhibited a gradually increased degree of aggregation in H2O. The PL quantum yields of P1′ – P3′ in H2O displayed a decreasing tendency consistent with the increased degree of aggregation, suggesting that the pronounced degree of aggregation was an important reason for the low PL quantum yields of WSCPs in H2O. Two structurally analogous water‐soluble trimers of P2′ and P3′ , model compounds 2,7‐bis(9″,9″‐bis{6‴‐[(N,N‐diethyl)‐N‐methylammonium] hexyl}‐2″‐fluorenylethynyl)‐9,9‐bis{6′‐[(N,N‐diethyl)‐N‐methylammonium]hexyl}fluorene hexaiodide and 1,4‐bis(9′,9′‐bis{6″‐[(N,N‐diethyl)‐N‐methylammonium]hexyl}‐2′‐fluorenylethynyl)benzene tetraiodide, were synthesized. The amplified fluorescence quenching of these WSCPs by Fe(CN)64− in H2O was studied by comparison with a corresponding analogous trimer. The effects of aggregation on the fluorescence quenching may be two‐edged in these cases. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5778–5794, 2006  相似文献   

13.
Novel polyfluorene copolymers with pendant hydroxyl groups, poly[2,7‐(9,9‐dihexylfluorene)‐2,7‐(9,9‐bis(6‐hydroxyhexyl)fluorene)‐co‐2,7‐(9,9‐dihexylfluorene)‐1,4‐phenylene] (PFP‐OH) and poly[2,7‐(9,9‐dihexylfluorene)‐2,7‐(9,9‐bis(6‐hydroxyhexyl)fluorene)‐co‐2,7‐(9,9‐dihexylfluorene)‐4,7‐(2,1,3‐benzothiadiazole)] (PFBT‐OH) were prepared. Acid‐catalyzed polycondensations of tetraethoxysilane were carried out in the presence of these polymers to obtain homogeneous hybrids. Photoluminescence spectra of these hybrids suggested the polymers were immobilized in silica matrix retaining their π‐conjugated structures. Further, hybrids of coat film were prepared utilizing perhydropolysilazane as a silica precursor. Their optical properties were examined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
A conjugated polyelectrolyte (CPE) named PBNBr, is prepared by post-quaternizing of poly{4,8-bis(octyloxy)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-9,9-bis(3′-((N,N-dimethylamino)propyl)fluorene-2,7-diyl} (PBN) with bromoethane. The chemical strucutes, electrooptical properties of the PBNBr is fully characterized. As compared with the PBN, the PBNBr exhibit much better methanol solution processibility, and more effectively tuning ability for the work function (Wf) of ITO (WF bare ITO, ?4.8 eV, WF of ITO with PBN interlayer, ?4.1 eV, WF of ITO with PBNBr interlayer ?3.9 eV). The open circuit voltages (VOC) and power conversion efficiencies (PCEs) of polymer solar cells from the blend film of poly(3-hexylthiophene) (P3HT) and [6,6]-phenylC61-butyric acid methyl ester (PC61BM) with PBN and/or PBNBr modified ITO as cathode are respectively increased about 27% and 120% in contrast to those for the control devices with bare ITO as cathode. And PCEs of 4.21% and 4.53% are achieved in the PSCs with PBN and/or PBNBr modified ITO as cathode.  相似文献   

15.
Bipyridinophane–fluorene conjugated copolymers have been synthesized via Suzuki and Heck coupling reactions from 5,8‐dibromo‐2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane and suitable fluorene precursors. Poly[2,7‐(9,9‐dihexylfluorene)‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P7 ) exhibits large absorption and emission redshifts of 20 and 34 nm, respectively, with respect to its planar reference polymer Poly[2,7‐(9,9‐dihexylfluorene)‐co‐alt‐1,4‐(2,5‐dimethylbenzene)] ( P11 ), which bears the same polymer backbone as P7 . These spectral shifts originate from intramolecular aromatic C? H/π interactions, which are evidenced by ultraviolet–visible and 1H NMR spectra as well as X‐ray single‐crystal structural analysis. However, the effect of the intramolecular aromatic C? H/π interactions on the spectral shift in poly[9,9‐dihexylfluorene‐2,7‐yleneethynylene‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P10 ) is much weaker. Most interestingly, the quenching behaviors of these two conjugated polymers are largely dependent on the polymer backbone. For example, the fluorescence of P7 is efficiently quenched by Cu2+, Co2+, Ni2+, Zn2+, Mn2+, and Ag+ ions. In contrast, only Cu2+, Co2+, and Ni2+ ions can partially quench the fluorescence of P10 , but much less efficiently than the fluorescence of P7 . The static Stern–Volmer quenching constants of Cu2+, Co2+, and Ni2+ ions toward P7 are of the order of 106 M?1, being 1300, 2500, and 37,300 times larger than those of P10 , respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4154–4164, 2006  相似文献   

16.
In this study, a series of gel electrolytes prepared from blends of alternating conjugated polymer electrolytes (CPEs)/poly(ethylene oxide) (PEO) were developed for use in quasi-solid-state dye-sensitized solar cells (DSSCs). The alternating CPEs poly[(N-(3′-((N,N-dimethyl)-N-ethylammonium)propyl)-3,6-carbazole)-alt-(9,9-dioctyl-2,7-fluorene)]diiodide, poly[(N-(3′-((N,N-dimethyl)-N-ethylammonium)propyl)-3,6-carbazole)-alt-(9,9-bis(2-(2-methoxyethoxy)ethyl)-2,7-fluorene)]diiodide (MPCFO-E), and poly[(N-(3′-((N,N-dimethyl)-N-ethylammonium)propyl)-3,6-carbazole)-alt-(siloxane substituted-2,7-fluorene)]diiodide (MPCFS-E) were synthesized through copolymerization of carbazole units (featuring quaternized ammonium iodide groups) and fluorene units featuring flexible side chains (9,9-dioctylfluorene, ethylene oxide-substituted fluorene, and siloxane-substituted fluorene, respectively). The MPCFO-E/PEO-based and MPCFS-E/PEO-based DSSCs exhibited lower electrochemical resistances, superior photovoltaic (PV) properties, and improved PV stabilities relative to those of the corresponding PEO-based DSSC. Among the studied systems, the DSSC based on the MPCFO-E (0.5 wt.%)/PEO blend electrolyte exhibited the best PV performance, with a short current density of 4.97 mA cm−2 and a photoenergy conversion efficiency of 1.17%.  相似文献   

17.
We have successfully synthesized a series of new fluorene‐based copolymers, poly[(9,9‐bis(4‐octyloxy‐phenyl)fluorene‐2,7‐diyl)‐co‐[2(3{2[4(2{4[bis(bromophenyl‐4yl) amino]phenyl}vinyl)‐2,5‐bisoctyloxyphenyl]vinyl}‐5,5‐dimethyl‐cyclohex‐2‐enylidene)malononitrile] (PFTBMs), with varying molar ratios of the low‐energy band gap comonomer, 2(3{2[4(2{4[bis(4‐bromophenyl)amino]phenyl}vinyl)‐2,5‐bisoctyloxyphenyl]vinyl}‐5,5‐dimethyl‐cyclohex‐2‐enylidene)malononitrile (BTBM). To prepare BTBM (which has a T‐shaped structure) from triphenylamine, dialkoxy phenyl, and isophorone, we introduced three individual segments of an isophorone derivative containing two cyanide groups at the carbonyl position, a dialkoxy phenyl group for increased solubility, and a triphenyl amine for effective charge transfer. Furthermore, we introduced vinyl linkages between each segment to increase the length of π‐conjugation. The synthesized polyfluorene copolymers with the BTBM, PFTBMs, were synthesized via palladium‐catalyzed Suzuki coupling reactions. The photoluminescence emission spectra of the synthesized polymers in solution did not show significant energy transfer from PBOPF segments to the BTBM units. Light‐emitting devices based on these polymers were fabricated with an indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/polymers/Balq/LiF/Al configuration. Examination of the electroluminescence emission of the synthesized polymers showed that the maximum wavelength shifted continuously toward long wavelengths with as the number of BTBM units in the polymer main chain was increased. In particular, a device using PFTBM 05 exhibited a maximum brightness of 510 cd/m2 and a maximum current efficiency of 0.57 cd/A. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 82–90, 2010  相似文献   

18.
Novel conjugated polyfluorene copolymers, poly[9,9‐dihexylfluorene‐2,7‐diyl‐co‐(2,5‐bis(4′‐diphenylaminostyryl)‐phenylene‐1,4‐diyl)]s (PGs), have been synthesized by nickel(0)‐mediated polymerization from 2,7‐dibromo‐9,9‐dihexylfluorene and 1,4′‐dibromo‐2,5‐bis(4‐diphenylaminostyryl)benzene with various molar ratios of the monomers. Because of the incorporation of triphenylamine (TPA) moieties, PGs exhibit much higher HOMO levels than the corresponding polyfluorene homopolymers and are able to facilitate hole injection into the polymer layer from the anode electrode in light‐emitting diodes. Conventional polymeric light‐emitting devices with the configuration ITO/PEDOT:PSS/polymer/Ca/Al have been fabricated. A light‐emitting device produced with one of the PG copolymers (PG10) as the emitting layer exhibited a voltage‐independent and stable bluish‐green emission with color coordinates of (0.22, 0.42) at 5 V. The maximum brightness and current efficiency of the PG10 device were 3370 cd/m2 (at 9.6 V) and 0.6 cd/A, respectively. To realize a white polymeric light‐emitting diode, PG10 as the host material was blended with 1.0 wt % of a red‐light‐emitting polymer, poly[9,9‐dioctylfluorene‐2,7‐diyl‐alt‐2,5‐bis(2‐thienyl‐2‐cyanovinyl)‐1‐(2′‐ethylhexyloxy)‐4‐methoxybenzene‐5′,5′‐diyl] (PFR4‐S), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV). The device based on PG10:PFR4‐S showed an almost perfect pure white electroluminescence emission, with Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.36) at 8 V; for the PG10:MEH‐PPV device, the CIE coordinates at this voltage were (0.30, 0.40) with a maximum brightness of 1930 cd/m2. Moreover, the white‐light emission from the PG10:PFR4‐S device was stable even at different driving voltages and had CIE coordinates of (0.34, 0.36) at 6 V and (0.31, 0.35) at 10 V. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1199–1209, 2007  相似文献   

19.
New copolymers of poly(styrene-alt-maleic anhydride) (PSMA) modified with 2-(4-aminophenyl)-5-(biphenyl-4-yl)-1,3,4-oxadiazole and hexylamine were prepared. The copolymers, characterized by UV-vis and FT IR spectroscopy, reached 1.22 mol % of the oxadiazole units relative to anhydride groups at the maximum (PSMA-4). Electric and optical properties of the copolymers were studied. The currents obtained depend strongly on the content of oxadiazole units in the copolymers. Currents measured in PSMA-4 were more than two orders of magnitude higher than those measured in the copolymers without oxadiazole. Using polymer blends made of poly(9,9-dihexadecylfluorene-2,7-diyl) and PSMA-4, blue light-emitting devices were fabricated and their photoluminescence and electroluminescence spectra were measured.  相似文献   

20.
6,7-Dialkoxy-2,3-diphenylquinoxaline based narrow band gap conjugated polymers, poly[2,7-(9-octyl-9H-carbazole)-alt-5,5-(5,8-di-2-thinenyl-(6,7-dialkoxy-2,3-diphenylquinoxaline))] (PCDTQ) and poly[2,7-(9,9-dioctylfluorene)-alt-5,5-(5,8-di-2-thinenyl-(6,7-dialkoxy-2,3-diphenylquinoxaline))] (PFDTQ), have been synthesized by Suzuki polycondensation. Their optical, electrochemical, transport and photovoltaic properties have been investigated in detail. Hole mobilities of PCDTQ and PFDTQ films spin coated from 1,2-dichlorobenzene (DCB) solutions are 1.0 × 10-4 and 4.1 × 10-4 cm2V-1s-1, respectively. Polymer solar cells were fabricated with the as-synthesized polymers as the donor and PC61BM and PC71BM as the acceptor. Devices based on PCDTQ:PC71BM (1:3) and PFDTQ:PC71BM (1:3) fabricated from DCB solutions demonstrated a power conversion efficiency (PCE) of 2.5% with a Voc of 0.95 V and a PCE of 2.5% with a Voc of 0.98 V, respectively, indicating they are promising donor materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号