首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flourishing development in flexible electronics has provoked intensive research in flexible strain sensors to realize accurate perception acquisition under different external stimuli.However,building hydrogel-based strain sensors with high stretchability and sensitivity remains a great challenge.Herein,MXene nanosheets were composited into polyacrylamide-sodium alginate matrix to construct mechanical robust and sensitive double networked hydrogel strain sensor.The hydrophilic MXene nanosheets formed strong interactions with the polymer matrix and endowed the hydrogel with excellent tensile properties(3150%),compliant mechanical strength(2.03 kPa~(-1) in Young's Module) and long-lasting stability and fatigue resistance(1000 dynamic cycles under 1,600% strain).Due to the highly oriented MXene-based three dimensional conductive networks,the hydrogel sensor achieved extremely high tensile sensitivity(18.15 in gauge factor) and compression sensitivity(0.38 kPa~(-1) below 3 kPa).MXene hydrogel-based strain sensors also displayed negligible hysteresis in electromechanical performance,typical frequent-independent feature and rapid response time to external stimuli.Moreover,the sensor exhibited accurate response to different scales of human movements,providing potential application in speech recognition,expression recognition and handwriting verification.  相似文献   

2.
The static and dynamic mechanical behavior of two double network (DN) hydrogels, alginate/polyacrylamide (PAAm) hybrid hydrogel and sodium poly(2-acrylamido-2-methylpropanesulfonic acid) PNaAMPS/PAAm, is presented to understand the role played by different cross-linked networks on fracture and recovery properties. Although with a smaller modulus, alginate/PAAm hybrid hydrogel had a much higher stretchability, whether with or without notches, in the tensile tests. Continuous step strain measurement by using a strain-controlled parallel-plate rheometer showed that alginate/PAAm can immediately recover its mechanical properties after breakdown, while PNaAMPS/PAAm didn't show mechanical recovery at all.  相似文献   

3.
A novel approach was developed to prepare a superporous hydrogel with superior mechanical and elastic properties. According to this method, a synthetic monomer was polymerized and crosslinked in the presence of a water-soluble alginate polymer. Later in the process, the alginate part of the synthesized hydrogel was treated with metal cations, which resulted in a hydrogel hybrid with an interpenetrating network structure. In this article, a hydrogel hybrid of acrylamide and alginate is highlighted because of its unique swelling and mechanical properties. This hydrogel hybrid shows resilience and a rubbery property in its fully water-swollen state, which not previously been reported. To help understand the underlying mechanism responsible for such unique properties with hydrogel hybrids, the ionotropic gelation of the alginate polymer was also studied in more detail.  相似文献   

4.
Historically, Maxwell was probably the first one who recognized the importance of time scales for understanding the mechanical response of asphalt. In instantaneous response asphalt behaves as an elastic, solid-like material, on the other hand its long time response is that of a viscous, fluid-like material. In the linear viscoelastic region asphalt behaves as a low molecular weight polymer. However, in the nonlinear region of high strains or rates of strain the behavior of some asphaltic systems can be rather complicated. In asphalts, asphaltenes, resins and alkanes compose a complex colloidal system, in which alkanes act as a solvent, asphaltenes as micelles and the polar resins as stabilizers. In order to enhance the mechanical properties of asphalts they are frequently modified by blending them with appropriate polymers. Changes in the impermanent network that can be formed in some of these blends can lead to an unexpected behavior of the steady shear viscosity function. Several different time scales emerge from this behavior. A possible relation of these “nonlinear” time scales to the linear viscoelastic time scales is discussed and examples of anomalous behavior of polymer-modified asphalts are given.  相似文献   

5.
pH‐responsive hydrogels are capable of converting chemical energy to mechanical work. To optimize their use as actuators, their response when operating against an external load must be fully characterized. Here, the actuation strain of a model pH‐sensitive hydrogel as a function of different constant loads is studied. The experimental actuation strain, produced by switching the pH from 2 to 12, decreases significantly and monotonically with increasing initial tensile load. Two models are developed to predict the actuation strain as a function of applied stress. Simple mechanical models based on the change in hydrogel modulus and cross sectional area due to the change in pH are unsatisfactory as they predict only a small change in actuation strain with increasing external stress. However, the model based on the elastic and mixing free energy functions derived from the Flory–Huggins theory is found to accurately account for the actuation strain as a function of stress. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 218–225  相似文献   

6.
A continuum damage model was developed to describe the finite tensile deformation of tough double-network (DN) hydrogels synthesized by polymerization of a water-soluble monomer inside a highly crosslinked rigid polyelectrolyte network. Damage evolution in DN hydrogels was characterized by performing loading-unloading tensile tests and oscillatory shear rheometry on DN hydrogels synthesized from 3-sulfopropyl acrylate potassium salt (SAPS) and acrylamide (AAm). The model can explain all the mechanical features of finite tensile deformation of DN hydrogels, including idealized Mullins effect and permanent set observed after unloading, qualitatively and quantitatively. The constitutive equation can describe the finite elasto-plastic tensile behavior of DN hydrogels without resorting to a yield function. It was showed that tensile mechanics of DN hydrogels in the model is controlled by two material parameters which are related to the elastic moduli of first and second networks. In effect, the ratio of these two parameters is a dimensionless number that controls the behavior of material. The model can capture the stable branch of material response during neck propagation where engineering stress becomes constant. Consistent with experimental data, by increasing the elastic modulus of the second network the finite tensile behavior of the DN hydrogel changes from necking to strain hardening.  相似文献   

7.
The present work reported the mechanical characterization of novel polypropylene (PP) composites reinforced with three-dimensional angle-interlock (3D-A) Kevlar/basalt fabrics. Two homogeneous fabrics with Kevlar (K3D) and basalt yarns (B3D), and a hybrid fabric (H3D) with a combination of both Kevlar and basalt yarns were produced. Three types of two layer 3D-A composites were manufactured using vacuum-assisted compression molding method. Static tensile and in-plane compression tests were carried out on the manufactured composites. The mechanical behavior of the three 3D-A composites was compared in terms of stress-strain response, elastic modulus, strength and failure strain. Influence of hybridization on the mechanical behavior of the 3D-A composites was also studied. Significant improvement in the tensile behavior of 3D-A homogeneous composites was observed due to hybridization. Meanwhile, there was no considerable improvement in in-plane compression behavior. The damage patterns for in-plane compression loading were examined through scanning electron microscopy (SEM) to explore the possible damage patterns such as matrix cracking, fiber failure, delamination and deformation. Numerical simulations were carried out using ABAQUS/Standard, by implementing a user-defined material subroutine (VUMAT) based on the Chang-Chang linear orthotropic damage model. Good agreement between experimental and numerical simulations was achieved in terms of damage patterns.  相似文献   

8.
Hydrogel microspheres, beads, and capsules of uniform size, differing in their chemical composition, have been prepared by electrostatic complex formation of sodium alginate with divalent cations and polycations. These have served as model spheres to study the influence of the chemical composition on both surface characteristics and bulk mechanical properties. Resistance to compression experiments yielding the compression work clearly identified differences as a function of the composition, with forces at maximal compression in the range of 34-455 mN. The suitability and informative value of atomic force microscopy have been confirmed for the case where surface characterization is performed in a liquid environment equivalent to physiological conditions. Surface imaging and mechanical response to indentation revealed different average surface roughness and Young's moduli for all hydrogel types ranging from 0.9 to 14.4 nm and from 0.4 to 440 kPa, respectively. The hydrogels exhibited pure elastic behavior. Despite a relatively high standard deviation, resulting from both surface and batch heterogeneity, nonoverlapping ranges of Young's moduli were reproducibly identified for the selected model spheres. The findings indicate the reliability of contact mode atomic force microscopy to quantify local surface properties, which may have an impact on the biocompatibility of alginate-based hydrogel materials of different composition and conditions of preparation. Moreover, it seems that local elastic properties and bulk mechanical characteristics are subject to analogous composition influences.  相似文献   

9.
The simultaneous measurement of the birefringence and strain of a sample subjected to sinusoidal strain is proposed as a means for elucidating the molecular mechanism of the response to high polymers to mechanical deformation. A linear phenomenologicical theory is proposed in which strain-optical coefficient distribution functions are assigned to the elastic and viscous members of a distribution of Maxwell elements. An apparatus has been constructed to determine the dynamic strain-optical coefficient at frequencies between 0 and 600 cycles/sec. By means of mechanical excitation of vibration at low frequencies and electromagnetic at high frequencies. The dynamic birefringences of polyethylene has been studied at room temperature over this frequency range.  相似文献   

10.
Calcium alginate beads are enclosed in a wide range of products including food, pharmaceuticals, and cosmetic formulations. The biopolymer matrix is often used to stabilize active ingredients and to provide a controlled release under well-defined conditions. In this context, it is of high interest to study the magnetic-induced attraction, elongation, and rupture of capsules or beads. In this work, we synthesized new types of magnetic switchable alginate beads. The magnetic sensitivity was achieved by incorporation of magnetic nanoparticles (MNPs) within the alginate gel. We measured the mechanical properties of single alginate beads in squeezing experiments, the evaporation of water and the magnetic sensitivity by stimulation of these beads in external fields. In all these measurements, the alginate and the nanoparticle concentration were systematically varied. We could show that the incorporation of MNPs generates a magnetic response of the beads and reduces the evaporation of water but has no influence on the mechanical stability of the beads during compression. Calculations of the shear modulus by means of the squeezing data result in good agreement in comparison to the shear moduli measured by rheological frequency sweep tests. With scanning electron microscopy, we could analyze the molecular structure of such composite systems, and we observed a homogeneous distribution of the MNPs within the gel matrix.  相似文献   

11.
This work aims to determine the tensile set behavior of a silicone rubber under different stress magnitudes and temperatures through digital image correlation implemented in an improved creep experimental set-up. Creep-recovery strains were measured with time at 20, 40 and 60 °C under tensile strengths of 98.1, 196.2 and 394.3 kPa, respectively. The behavior of creep and recovery strain with time at the different stress magnitudes and temperatures was successfully obtained by the experiments. The corresponding elastic and viscous components of the material for each condition were determined from the results. Overall, all obtained creep behaviors matched with the behavior of a four-element model of creep-recovery. The increase of temperature generated an increase of creep compliance at the three loads, but the increase of tensile load produced a decrease of creep compliance for the three temperatures. The strain was not recovered entirely in any case for the test time stated.  相似文献   

12.
The development of hydrogels as skin dressings demonstrates a great potential in real life applications. To achieve this, the hydrogel has to conquer its natural poor mechanical strength, and to prolong its lifetime, antifatigue and self-healing properties originating from dynamic interactions are also required. As skin dressings, the hydrogel needs to maintain its ductility while pursuing the above mentioned properties. In this work, poly(ethylene glycol) diacrylate is used to produce skin dressings by reinforcing poly(ethylene glycol) diacrylate/alginate double network hydrogels with a crosslinker from mussel-inspired chemistry, which is 3,4-dihydroxy-l-phenylalanine. This crosslinking methodology significantly improved mechanical strength of the hydrogel, with 11,200% increase in compressive failure strength; it endowed the hydrogel with outstanding antifatigue and training strengthening properties that makes its mechanical strength increasing in a 50 cycles compressive test; the hydrogel showed excellent self-healing properties that in rheological characterization; it also displayed enhanced storage modulus after withstanding a shear strain up to 1100%; meanwhile, the hydrogel exhibited extreme ductility with an elastic modulus of only 10.90–16.53 kPa. 3,4-dihydroxy-l-phenylalanine also renders the hydrogel its inherent antioxidant activity, conductivity, and bioadhesiveness. Together with the highly transparent appearance, the hydrogels possess a great potential and practibility in the fields of skin dressings.  相似文献   

13.
Developing a low-cost and well-recyclable adsorbent with high adsorption capacity is greatly desirable in dye wastewater treatment. Here, we demonstrate a kind of novel tough and reusable hydrogel beads with quite high capacity of dye adsorption via incorporating mussel-bioinspired poly(L-DOPA) (PDOPA) into alginate/poly(acrylamide) double network (DN) hydrogels. The synthesized PDOPA nanoaggregates were introduced into the DN hydrogels by simple one-pot mixing with the monomers prior to polymerization. The fabricated hydrogel beads exhibited high mechanical strength and good elastic recovery due to the interpenetrating Ca2+-alginate and poly(acrylamide) networks. It was shown that the beads exhibited relatively high dye adsorption capacity compared to other adsorbents reported in literature, and the introduction of PDOPA with an appropriate amount raised the adsorption capacity. It is believed that the addition of PDOPA and the matrix of double network architecture contributed synergistically to the high adsorption capacity of hydrogel beads. Moreover, the desorption of dyes could be easily realized via rinsing in acidic water and ethanol solution. The hydrogel beads remained the high adsorption capacity even after 5 times of adsorption and desorption cycles. This tough and stable hydrogel with high adsorption capacity may have potential in treatment of dye wastewater released by textile dyeing industry.  相似文献   

14.
Influence of water content and mechanical action on the viscosity of acrylamide hydrogels is studied. It is shown that an anomalous viscous and viscoplastic flows occur at a low and high water content, respectively. Peculiarities of the hydrogel destruction at different water content are discussed.  相似文献   

15.
Surgical clipping and endovascular coiling are well recognized as conventional treatments of Penetrating Brain Injury aneurysms. These clinical approaches show partial success, but often result in thrombus formation and the rupture of aneurysm near arterial walls. The authors address these challenging brain traumas with a unique combination of a highly biocompatible biopolymer hydrogel rendered magnetic in a flexible and resilient membrane coating integrated to a scaffold stent platform at the aneurysm neck orifice, which enhances the revascularization modality. This work focuses on the in situ diagnosis of nano‐mechanical behavior of bacterial nanocellulose (BNC) membranes in an aqueous environment used as tissue reconstruction substrates for cerebral aneurysmal neck defects. Nano‐mechanical evaluation, performed using instrumented nano‐indentation, shows with very low normal loads between 0.01 to 0.5 mN, in the presence of deionized water. Mechanical testing and characterization reveals that the nano‐scale response of BNC behaves similar to blood vessel walls with a very low Young´s modulus, E (0.0025 to 0.04 GPa), and an evident creep effect (26.01 ± 3.85 nm s?1). These results confirm a novel multi‐functional membrane using BNC and rendered magnetic with local adhesion of iron‐oxide magnetic nanoparticles.  相似文献   

16.
17.
氧化石墨烯是一种具有单原子厚度的二维材料, 具有优异的力学性能和良好的水分散性, 其表面有大量的含氧官能团. 将氧化石墨烯引入水凝胶体系中可以提高水凝胶的机械性能, 丰富其刺激响应的类型. 目前, 氧化石墨烯水凝胶在高强度、 吸附、 自愈合及智能材料等很多领域均有出色的表现. 氧化石墨烯水凝胶的研究已有10年的历史. 本文总结了氧化石墨烯水凝胶的制备方法, 归纳了智能氧化石墨烯水凝胶在光热响应、 pH响应和自愈合3个方面的响应机理和研究进展, 并综合评述了其在高强度水凝胶、 生物医学、 智能材料和污水处理等方面的应用前景.  相似文献   

18.
Local, micromechanical environment is known to influence cellular function in heterogeneous hydrogels, and knowledge gained in micromechanics will facilitate the improved design of biomaterials for tissue regeneration. In this study, a system comprising microstructured resilin‐like polypeptide (RLP)–poly(ethylene glycol) (PEG) hydrogels is utilized. The micromechanical properties of RLP‐PEG hydrogels are evaluated with oscillatory shear rheometry, compression dynamic mechanic analysis, small‐strain microindentation, and large‐strain indentation and puncture over a range of different deformation length scales. The measured elastic moduli are consistent with volume averaging models, indicating that volume fraction, not domain size, plays a dominant role in determining the low strain mechanical response. Large‐strain indentation under a confocal microscope enables the visualization of the microstructured hydrogel micromechanical deformation, emphasizing the translation, rotation, and deformation of RLP‐rich domains. The fracture initiation energy results demonstrate that failure of the composite hydrogels is controlled by the RLP‐rich phase, and their independence with domain size suggested that failure initiation is controlled by multiple domains within the strained volume. This approach and findings provide new quantitative insight into the micromechanical response of soft hydrogel composites and highlight the opportunities in employing these methods to understand the physical origins of mechanical properties of soft synthetic and biological materials.  相似文献   

19.
Stimuli-responsive hydrogels are intriguing biomimetic materials. Previous efforts to develop mechano-responsive hydrogels have mostly relied on chemical modifications of the hydrogel structures. Here, we present a simple, generalizable strategy that confers mechano-responsive behavior on hydrogels. Our approach involves embedding hybrid vesicles, composed of phospholipids and amphiphilic block copolymers, within the hydrogel matrix to act as signal transducers. Under mechanical stress, these vesicles undergo deformation and rupture, releasing encapsulated compounds that can control the hydrogel network. To demonstrate this concept, we embedded vesicles containing ethylene glycol tetraacetic acid (EGTA), a calcium chelator, into a calcium-crosslinked alginate hydrogel. When compressed, the released EGTA sequesters calcium ions and degrades the hydrogel. This study provides a novel method for engineering mechano-responsive hydrogels that may be useful in various biomedical applications.  相似文献   

20.
The mechanical responses of high‐density polyethylene (HDPE), polypropylene (PP) and polyamide 6 (PA 6) were experimentally investigated for a wide range of stress states and strain rates. This was accomplished by testing numerous specimens with different geometries. The uniaxial compression of cylindrical unnotched specimens and the uniaxial tensile behaviour of dumbbell specimens at different strain rates, was determined. A series of biaxial loading tests (combined shear and tension/compression, pure shear, pure tension/compression) using a designed Arcan testing apparatus were also performed. Flat and cylindrical notched specimens with different curvature radii were additionally tested in order to explore a wider range of stress states. The Drucker‐Prager yield criterion was calibrated with a set of experimental data, for which analytical formulae for stresses are available, and then applied to predict the deformation behaviour under different stress states, prior to strain localization. The results of the numerical simulations show that the Drucker‐Prager model can capture the initial elastic range and the post‐elastic response very satisfactorily. For triaxial and biaxial stress states there is a good agreement, however some load‐displacement responses are only satisfactorily described. Deviations observed in the predicted and experimental results are very likely attributed to the third invariant stress tensor, which was not explored in the model calibration. The evolution of stress triaxiality and Lode angle parameters with equivalent plastic strain were extracted and analysed for several specimens. The results show a plastic yielding behaviour sensitive to the stress state, which can be attributed to different combinations of stress triaxialities and Lode angle parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号