首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Physical and gas transport properties of novel hyperbranched polyimide–silica hybrid membranes were investigated and compared with those of linear‐type polyimide–silica hybrid membranes with similar chemical structures. Hyperbranched polyamic acid, as a precursor, was prepared by polycondensation of a triamine, 1,3,5‐tris(4‐aminophenoxy)benzene (TAPOB), and a dianhydride, 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA). 6FDA‐TAPOB hyperbranched polyimide–silica hybrids were prepared using the polyamic acid, water, and tetramethoxysilane (TMOS) by sol–gel reaction. 5% weight‐loss temperature of the 6FDA‐TAPOB hyperbranched polyimide–silica hybrids determined by TG‐DTA measurement considerably increased with increasing silica content, indicating effective crosslinking at polymer–silica interface. CO2, O2, N2, and CH4 permeability coefficients of the 6FDA‐based polyimide–silica hybrids increased with increasing silica content. In addition, CO2/CH4 selectivity of the 6FDA‐TAPOB–silica hybrids remarkably increased with increasing silica content. From 129Xe NMR analysis, characteristic distribution and interconnectivity of cavities created around polymer–silica interface were suggested in the 6FDA‐TAPOB–silica hybrids. It was indicated that size‐selective separation ability is effectively brought by the incorporation of silica for the 6FDA‐TAPOB hyperbranched polyimide–silica hybrid membranes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 291–298, 2006  相似文献   

2.
Using poly(amic acid) (PAA) as a precursor followed by thermal imidization, the polyimide/silica nanocomposite films were prepared via an improved sol–gel process and a blending process, respectively. FT‐IR, TEM and TGA measurements were used to characterize the structure and properties of the obtained films. The results confirmed that the introduction of silica did not yield negative effects on the conversion of the PAA precursor to the polyimide. With the increase of silica content, the aggregation of silica appeared in the polyimide matrix, and the thermal stability decreased slightly for both kinds of films. The dielectric constant (ε) of both films increased slowly with the increase of the silica concentration. The dielectric constant of the obtained polyimide/silica nanocomposite films displayed good stability within a wide range of temperatures or frequency. Based on modeling relation between ε and silica content, the difference in dielectric properties for two kinds of nanocomposites are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Recently, mesoporous silica was blended with polyimide to develop low dielectric constant (k) materials with improving mechanical and thermal properties of polyimide by utilizing both the nanoporous structure and silica framework. However, even the use of mesoporous silica did not show a significant decrease of k due to the phase segregation in between polyimide and the mesoporous silica materials. In this work, we attempted to prepare polyimide/mesoporous silica hybrid nanocomposites having relatively good phase mixing behavior by utilizing polyimide synthesized from a water soluble poly(amic acid) ammonium salt, which lead to low k up to 2.45. The thermal properties of polyimide were improved by adding mesoporous silicas. For this work, we have fabricated mesoporous silicas through surfactant-templated condensation of tetraethyl orthosilicate (TEOS). Pyromellitic dianhydride (PMDA)-4,4′-oxydianiline (ODA) polyimide was prepared from poly(amic acid) ammonium salt, which had been obtained by incorporating triethylamine (TEA) into PMDA-ODA poly(amic acid) in dimethylacetamide (DMAc), followed by thermal imidization.  相似文献   

4.
A series of photosensitive hyperbranched polyimides (HB‐PIs) were prepared through facile end‐group modifications of the fully imidized polymer. A triamine, 1,3,5‐tris(4‐aminophenoxy)benzene, and a dianhydride, 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, were condensed with a dropwise addition method in a molar ratio of 1/2 to afford an anhydride‐terminated poly(amic acid) precursor, which was then end‐capped by 4‐aminophenol and chemically imidized to yield a phenol‐terminated HB‐PI. The modifications of the terminal phenol groups of the polyimide by acyl chloride compounds (acryloyl chloride, methylacryloyl chloride, and cinnamoyl chloride) gave the target polymers. The photosensitive HB‐PIs showed good thermal properties and excellent solubility even in low‐boiling‐point solvents at room temperature, such as acetone, 1,1,2‐trichloroethane, tetrahydrofuran, and chloroform. Photosensitive property studies revealed good photolithographic properties with a resolution greater than 3 μm and a sensitivity of 650–680 mJ/cm2. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1735–1744, 2004  相似文献   

5.
Dye‐capped, hyperbranched, conjugated polymers were prepared by the modification of the peripheral bromo end groups of the hyperbranched polymer core with a palladium‐catalyzed Suzuki–Miyaura cross‐coupling reaction. The dye‐modified, hyperbranched polymers had high molecular weights and displayed good solubility in common organic solvents such as tetrahydrofuran, toluene, and chloroform. The structure of the dye‐modified, hyperbranched polymers was characterized by 1H and 13C NMR and elemental analysis. The thermal properties of five kinds of hyperbranched polymers were investigated with thermogravimetric analysis and differential scanning calorimetry. The optical properties of the dye‐capped, hyperbranched polymers were investigated with ultraviolet‐absorption and fluorescence spectroscopy. The hyperbranched structure could effectively reduce the aggregation of the peripheral dyes. The emission colors of the hyperbranched polymers could be easily tuned by end‐group modification. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 111–124, 2007  相似文献   

6.
A new hyperbranched‐linear‐hyperbranched polymer was prepared in a one pot process by reaction of 4,4‐bis(4‐hydroxyphenyl)valeric acid and poly(ethylene glycol) (HPH). After characterization by 1H and 13C NMR, SEC, DSC, and TGA, this polymer was used, in proportions of 5, 10, and 15 phr, as a chemical modifier in the UV and thermal cationic curing of 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexyl carboxylate epoxy resin. The curing process was studied by calorimetry, demonstrating the accelerating effect of the hydroxyl groups present in HPH's structure. The morphology of the resulting thermosets depended on the curing system used, as demonstrated by FE‐SEM microscopy, but in both cases phase separation occurred. Thermosets obtained by thermal curing presented lower thermal stability than UV‐cured materials. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
聚酰亚胺泡沫材料的制备与性能表征   总被引:1,自引:0,他引:1  
采用3,3′,4,4′-二苯甲酮四甲酸二酐(酮酐,BTDA)和4,4′-二氨基二苯甲烷(MDA)为主要原料制备了一种聚酰亚胺泡沫材料.采用傅里叶变换红外光谱(FTIR)、核磁共振氢谱(1H-NMR)、扫描电镜(SEM)、导热系数测定仪、热失重分析(TGA)、差式扫描量热分析(DSC)及驻波管分别对前聚体粉末化学结构、泡沫泡孔结构、热性能及声学性能进行了表征.研究结果表明前聚体粉末以聚酰胺酯和铵盐两种形式存在,所得泡沫泡孔均匀,并且随前聚体干燥温度升高,泡孔尺寸变小.泡沫的导热系数λ为7.62×10-3W/(m.K),失重5wt%的分解温度Td5为540℃,玻璃化转变温度Tg为306℃,表明其具有优良的隔热耐热性.并且由声学测试可知在0~2000Hz频率范围内,吸声系数可达0.79,传声损失可达19.4dB,具有低频吸声、隔声性.  相似文献   

8.
Polyimide and hybrid polyimide‐siloxane were synthesized by polycondensation, imidization, and sol‐gel reaction. The polyimides were prepared from pyromellitic dianhydride (PMDA) and 4,4‐oxydianiline (ODA) in N‐methyl‐2‐pyrollidone (NMP). Trimethoxyvinyl silane (TMVS) was used as a source of silica. Their surface morphologies, structures and thermal performances were determined using scanning electron microscopy (SEM), infrared spectroscopy (IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results showed that the silica particles were finely and rather homogeneously dispersed in polymers. The glass transition temperature (Tg) of hybrid membrane materials increased with the increasing silica content. TGA analysis showed that polyimides were thermally stable with silica. Modified polyimide‐siloxane films, thermal characteristics were found to be better than the polyimide films without silica. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Gas transport properties of novel hyperbranched polyimide/hydroxy polyimide blends and their silica hybrid membranes were investigated. Gas permeability coefficients of the blend membranes showed positive deviation from a semilogarithmic additive rule. The enhanced gas permeability were resulted from the increase in free volume elements caused by the intermolecular interaction between terminal amine groups of the hyperbranched polyimide and hydroxyl groups of the hydroxy polyimide backbone. Additionally, CO2/CH4 separation ability of the blend membranes was markedly promoted by hybridization with silica. The remarkable CO2/CH4 separation behavior was considered to be due to characteristic distribution and interconnectivity of free volume elements created by the incorporation of silica. For the hyperbranched polyimide/hydroxy polyimide blend system, polymer blending and hybridization techniques synergistically provided the excellent CO2/CH4 separation ability.  相似文献   

10.
Polyimide/montmorillonite nanocomposites with photolithographic properties (PSPI/MMT) were prepared by in situ polymerization using an intrinsic photosensitive polyimide (PSPI) based on 4,4-diamino-3,3-dimethyldiphenylmethane (MMDA) and benzophenone-3,3,4,4-tetracarboxylic dianhydride (BTDA). XRD, TEM were used to obtain the information on morphological structure of PSPI/MMT nanocomposites. The exfoliated structure was obtained in the MMT content range studied. Satisfactory photolithographic patterns were obtained when the MMT content was below 2 wt.%. Universal tester, TGA, DSC were applied to characterize the mechanical and thermal properties of the nanocomposites. The introduction of MMT led to increase in tensile strength to the PSPI matrix while the elongation at break was not obviously effected. The introduction of MMT also resulted in improved thermal stability, marked decrease in coefficient of thermal expansion, decrease in solvent uptake, slight increase in glass transition temperature and increase in modulus.  相似文献   

11.
A series of hyperbranched copolyimides (HBPI)s based on commercially available monomers 4,4′-oxydiphthalic anhydride (ODPA), 2,4,6-triaminopyrimidine (TAP) and 4,4′-oxydianiline (ODA) were prepared. The synthesis involved the formation of hyperbranched polyamic acid (PAA) precursors in the first step and the thermal imidization of cast thin PAA films in the second step. Two basic types of HBPIs were prepared by controlling the molar ratio of ODPA and an amine mixture of TAP and ODA. When the molar ratio was 1:1, the amine-terminated HBPIs were obtained; with the molar ratio of 2:1 anhydride-terminated HBPIs were prepared. Degree of branching was estimated by 1H and 13C NMR analysis. It was found that approximately 48% of TAP units presented in ODPA:TAP:ODA = 1:0.75:0.25 HBPI macromolecules create the branching unit. Amine-terminated HBPIs showed moderate weight-average molecular weights and these values rather higher than for the anhydride-terminated HBPIs. With increasing ODA comonomer content in amine-terminated HBPIs increased their molecular weight and thermal and mechanical stability, whereas in anhydride-terminated HBPIs these trends were opposite. Amine-terminated HBPIs generally exhibited higher thermal stability than the anhydride-terminated ones. Gas permeability coefficients of both HBPIs types increased with increasing content of ODA comonomer. Prepared membranes exhibited high separation performance and have a potential to be utilized in industrial gas separation applications.  相似文献   

12.
A practical synthetic route to polybasic, polyamine, hyperbranched grafts using commercially available polyethyleneimine (PEI) and cyanuric chloride as a coupling agent is described. The grafting process was followed by XPS spectroscopy, TGA analysis, ATR‐IR spectroscopy, acid–base titration, and by 13C CP‐MAS NMR spectroscopy. In the case of silica gel, thermal gravimetric analyses showed that a 35 wt % loading of graft could be obtained. Acid–base titration of hyperbranched PEI grafts on silica gel and oxidized polyethylene powder showed the ion‐exchange capacities of these PEI‐grafted substrates were 1.00 and 0.17 mmol of base/g of solid, respectively. Although the focus of the paper is on grafting on silica gel, the influence of the kind of support and solvent on the grafting process and the ion‐exchange capacity was examined. Water was a good solvent for PEI grafting onto silica gel, but a more hydrophobic polyethylene support required the use of dichloromethane as a solvent for PEI graft synthesis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4654–4665. 2005  相似文献   

13.
By oxidative coupling polymerization of the imidic macromonomer of oligoaniline and p-phenylenediamine we have prepared an electroactive polyimide, exhibiting exciting molecular structure, electrochemical properties and excellent thermal stability. The polymerization characteristics and structure of the electroactive polyimide were systematically studied by Fourier-transform infrared (FTIR) spectra and X-ray powder diffraction (XRD). Electrochemical activity of the polyimide was tested in 1.0 M H2SO4 aqueous solution and it shows two redox peaks, which is the same as that of polyaniline. Moreover, the thermal properties of the polyimide were evaluated by thermogravimetric analysis (TGA). Its electrical conductivity is about 8.87 × 10−6 S cm−1 at room temperature upon preliminarily protonic-doped experiment.  相似文献   

14.
Organosoluble polyimide/silica hybrid materials were prepared via the sol-gel process and their pervaporation properties were studied. The organosoluble polyimide (PI) was based on 4,4′-oxydiphthlic dianhydride (ODPA) and 4,4′-diamino-3,3′-dimethyldiphenylmethane (DMMDA). The surface chemical structure of polyimide/silica films was analyzed by Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) and the results show that the completely hydrolysis of alkoxy groups of precursors and formation of the three-dimensional Si-O-Si network in the hybrid films. The morphology and the silica domain thus obtained were studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. The silica particle size in the hybrid is in the range of 40-100 nm for the hybrid films when the amount of silica is less than 20 wt%. The strength and the modulus of the hybrid films are improved and the mechanical properties were found to be strongly dependent on the density of the crosslink. The glass transition temperature (Tg) of the hybrid films was determined by dynamic mechanical analysis (DMA) and the value increased 15-20 °C as the silica content increased. Furthermore, the pervaporation performances of the prepared hybrid films were also investigated for the ethanol/water mixtures at different temperature.  相似文献   

15.
聚酰亚胺/二氧化硅纳米尺度复合材料的研究   总被引:72,自引:0,他引:72  
通过正硅酸乙酯(TEOS)在聚酰胺酸(PAA)的N,N’ 二甲基乙酰胺(DMAc),溶液中进行溶胶 凝胶反应,制备出不同二氧化硅含量的聚酰亚胺/二氧化硅(PI/SiO2)复合薄膜材料.二氧化硅含量低于10wt%的样品是透明浅黄色薄膜;二氧化硅含量高于10wt%的样品是不透明棕黄色薄膜.利用红外光谱、扫描电镜、热失重分析、动态力学分析、热膨胀系数测试和应力 应变测试等方法研究了此类材料的结构与性能.结果表明,PI/SiO2纳米复合材料具有较聚酰亚胺更高的热稳定性和更高的模量;线膨胀系数显著降低;拉伸强度和断裂伸长随二氧化硅含量而变化,分别在10wt%和30wt%附近出现最大值  相似文献   

16.
In this work, polyimide/silica hybrid composites were prepared by the sol-gel reaction of tetraethoxysilane(TEOS) and the thermal imidization of poly(amic acid) from 3,3′,4,4′-biphenyltetracarboxylic dianhydride(BPDA) and 4,4′-oxydianiline(ODA), and their photophysical properties were investigated using a fluorescence spectroscopy. It was found that the intrinsic fluorescence of poly(4,4′-oxydiphenylene-3,3′4,4′-biphenyltetracarboximide)(BPDA-ODA) such as emission intensity and emission wavelength depends strongly on the changes in the molecular conformations during the sol-gel reaction and the thermal imidization. In conclusion, we found that the fluorescence spectroscopy can provide an insight into how the intermolecular or intramolecular interaction of polyimide in the hybrid composite system is affected by the silica contents, depending on the sample states.  相似文献   

17.
A high-performance polyimide was prepared by the dipolymerization of 4,4'-diaminobenzanilide (DABA) and pyromellitic dianhydride (PMDA). Due to the introduction of rigid planar moieties and amide groups, the polyimide shows outstanding properties, such as high glass transition temperatures (435 °C), excellent thermal stability (Td5%, 542 °C, coefficient of thermal expansion, −3.2 ppm K−1), and superior mechanical properties. Most importantly, the polyimide exhibits excellent barrier properties, with oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) low to 7.9 cm3 (m2 day)−1 and 5.1 g (m2 day)−1, respectively. Wide angle X-ray diffractograms (WAXD), positron annihilation lifetime spectroscopy (PALS) and molecular dynamics simulations reveal that the excellent barrier properties are mainly attributed to the high crystallinity, high extent of in-plane crystalline orientation, and low free volume, which are resulted from the rigid planar structure and strong interchain hydrogen bonding. The high-barrier and thermally stable polyimide has an attractive potential application prospect in the fields of micro-electronics encapsulation and high grade packaging industry.  相似文献   

18.
A poly[bis(trialkylammonium) 4,4′-oxydiphenylenepyromellitamate] film not containing residual solvents was prepared first as a polyimide precursor film. The preparative method is composed of three process steps involving (1) polymerization of pyromellitic dianhydride with 4,4′-oxydianiline in a mixed solvent of tetrahydrofuran/methanol, (2) addition of a mixture of methanol/trialkylamine to the resulting poly(4,4′-oxydiphenylenepyromellitamic acid) solution, and (3) casting onto glass plates and drying. The salt formation between the poly(amic acid) and trialkylamines was confirmed first by spectroscopic methods. The dried salt film is thermally cured to produce the polyimide film with a reduced coefficient of thermal expansion (CTE). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2493–2499, 1997  相似文献   

19.
A series of hyperbranched polyimides (HBPIs) were synthesized by reacting a triamine monomer N ,N ′,N ″‐tris(4‐methoxyphenyl)‐N ,N ′,N ″‐tris(4‐phenylamino)?1,3,5‐benzenetriamine with various dianhydrides such as oxydiphthalic dianhydride (ODPA), 3,3′,4,4′‐diphenylsulfonetetracarboxylic dianhydride (DSDA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA). The hyperbranched polyimide (6FHBPI) using 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) as dianhydride monomer was also added into the discussion. All the hyperbranched polyimides exhibited excellent organo‐solubility and high thermal stability. Memory devices with a sandwiched structure of indium tin oxide (ITO)/HBPI/Al were constructed by using these HBPIs as the active layers. All these HBPIs based memory devices exhibited favorable memory performances, with switching voltages between ?1.3 V and ?2.5 V, ON/OFF current ratios up to 107 and retention times long to 104 s. Tunable memory characteristics from electrical insulator to volatile memory, and then to nonvolatile memory were obtained by adjusting the electron acceptors of these HBPIs. Molecular simulation results suggested that the electron affinity and the dipole moment of these HBPIs were responsible for the conversion of the memory characteristics. With the electron affinity and dipole moment of these HBPIs increasing, the memory characteristics turned from volatile to nonvolatile. The present study suggested that tunable memory performance could be achieved through adjusting the acceptor moieties of the hyperbranched polyimides. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 2281–2288  相似文献   

20.
The successful incorporation of multiwalled carbon nanotubes (MWCNTs) into silica aerogels prepared by sol–gel method is reported herein. Pure silica aerogels prepared using sodium silicate precursor by ambient pressure drying are so fragile that they cannot be used easily. MWCNTs were used as reinforcements to improve the mechanical properties of silica aerogels. Results show that inserting small amounts of MWCNTs in the gels causes enhanced dimensional stability of silica aerogels. The silica aerogels were prepared by doping MWCNTs in silica matrix before gelation. The influence of MWCNTs on some microstructural aspects of silica matrix has been studied using nitrogen adsorption–desorption isotherms. From SEM study it is confirmed that the silica particles get capped on the surface of MWCNTs suggesting an enhanced toughness. Further, FTIR, Raman, EDAX, thermal conductivity and hydrophobicity studies of these doped aerogels were carried out. By addition of MWCNTs, silica aerogels were formed with 706 m2/g BET and 1,200 m2/g Langmuir surface areas and 149o contact angle. Low density (0.052 g/cc) and low thermal conductivity (0.067 W/m K) MWCNTs doped silica aerogels were obtained for the molar ratio of Na2SiO3::H2O::MWCNTs::citric acid::TMCS at 1::146.67::2.5 × 10−3::0.54::9.46 respectively with improved mechanical strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号