首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic behavior of a multiagent system in which the agent size si is variable it is studied along a Lotka-Volterra approach. The agent size has hereby the meaning of the fraction of a given market that an agent is able to capture (market share). A Lotka-Volterra system of equations for prey-predator problems is considered, the competition factor being related to the difference in size between the agents in a one-on-one competition. This mechanism introduces a natural self-organized dynamic competition among agents. In the competition factor, a parameter σ is introduced for scaling the intensity of agent size similarity, which varies in each iteration cycle. The fixed points of this system are analytically found and their stability analyzed for small systems (with n=5 agents). We have found that different scenarios are possible, from chaotic to non-chaotic motion with cluster formation as function of the σ parameter and depending on the initial conditions imposed to the system. The present contribution aim is to show how a realistic though minimalist nonlinear dynamics model can be used to describe the market competition (companies, brokers, decision makers) among other opinion maker communities.  相似文献   

2.
《Nuclear Physics B》1995,455(3):577-618
We present an exact solution of the O(n) model on a random lattice. The coupling constant space of our model is parametrized in terms of a set of moment variables and the same type of universality with respect to the potential as observed for the one-matrix model is found. In addition we find a large degree of universality with respect to n; namely for n gE ] − 2,2[ the solution can be presented in a form which is valid not only for any potential, but also for any n (not necessarily rational). The cases n = ±2 are treated separately. We give explicit expressions for the genus-zero contribution to the one- and two-loop correlators as well as for the genus-one contribution to the one-loop correlator and the free energy. It is shown how one can obtain from these results any multi-loop correlator and the free energy to any genus and the structure of the higher-genera contributions is described. Furthermore we describe how the calculation of the higher-genera contributions can be pursued in the scaling limit.  相似文献   

3.
We compute the structure function of large kT scaling law in the framework of a multiperipheral or parton model. This function depends on two scaling variables. We show that recent NAL data are in perfect agreement with the same 1/kT8 law observed at ISR. The observed apparent change of the scaling power is faked by the neglect of the dependence on one of the scaling variables.  相似文献   

4.
What is social pressure, and how could it be adaptive to conform to others' expectations? Existing accounts highlight the importance of reputation and social sanctions. Yet, conformist behavior is multiply determined: sometimes, a person desires social regard, but at other times she feels obligated to behave a certain way, regardless of any reputational benefit—i.e. she feels a sense of should. We develop a formal model of this sense of should, beginning from a minimal set of biological premises: that the brain is predictive, that prediction error has a metabolic cost, and that metabolic costs are prospectively avoided. It follows that unpredictable environments impose metabolic costs, and in social environments these costs can be reduced by conforming to others' expectations. We elaborate on a sense of should's benefits and subjective experience, its likely developmental trajectory, and its relation to embodied mental inference. From this individualistic metabolic strategy, the emergent dynamics unify social phenomenon ranging from status quo biases, to communication and motivated cognition. We offer new solutions to long-studied problems (e.g. altruistic behavior), and show how compliance with arbitrary social practices is compelled without explicit sanctions. Social pressure may provide a foundation in individuals on which societies can be built.  相似文献   

5.
A.A. Yurova 《Physics letters. A》2008,372(23):4222-4229
We show that (1+2) nonlinear Klein-Gordon equation with negative coupling admits an exact solution which appears to be the linear superposition of the plane wave and the nonsingular rational soliton. We show that the same approach allows to construct the solution of similar properties for the Euclidean ?4 model with broken symmetry. Interestingly, this regular solution will be of instanton type only in the D?5 Euclidean space. Thus one can use the generalized Fubini instantons (in quantum cosmology for example) only for the case of the single infinite extra dimension.  相似文献   

6.
Today’s supply networks consist of a certain amount of logistics objects that are enabled to interact with each other and to decide autonomously upon their next steps; in other words, they exhibit a certain degree of autonomous cooperation. Therefore, modern logistics research regards them as complex adaptive logistics systems. In order to analyze evolving dynamics and underlying implications for the respective systems’ behavior as well as the potential outcomes resulting from the interaction between autonomous decision-making “smart parts”, we propose in this contribution a fully solvable stylized model. We consider a population of homogeneous, autonomous interacting agents traveling on R with a given velocity that is itself corrupted by White Gaussian Noise. Based on real time observations of the positions of his neighbors, each agent is allowed to adapt his traveling velocity. These agent interactions are restricted to neighboring entities confined in finite spatial clusters (i.e. we have range-limited interactions). In the limit of a large population of neighboring agents, a mean-field dynamics can be derived and, for small interaction range, the resulting dynamics coincides with the exactly solvable Burgers’ nonlinear field equation. Explicit Burgers’ solution enables to explicitly appreciate the emergent structure due to the local and individual agent interactions. In particular, for strongly interactive regimes in the present model, the resulting spatial distribution of agents converges to a shock wave pattern. To compare performances of centralized versus decentralized organization, we assign cost functions incurred when velocity adaptations are triggered either by multi-agent interactions or by central control. The multi-agent cumulative costs are then compared with the costs that would be incurred by implementing an effective optimal central controller able, for a given time horizon, to reproduce an identical spatial probability distribution of agents. The resulting optimal control problem can be solved exactly and the corresponding costs can be expressed as the Kullback-Leibler relative entropy between the free and the controlled probability measures. This enables one to conclude that for time horizons shorter than a critical value, multi-agent interactions generate smaller cumulative costs than an optimal effective central controller.  相似文献   

7.
R.J. Cant 《Nuclear Physics B》1983,220(3):317-326
We discuss the decay of false vacua which originate from quantum mechanical effects. In particular we examine the 1N expansion of the O(N) λφ4 model. This model has an effective potential which is complex for large values of the field. In a previous paper we showed that this effective potential could not be used to calculate the decay rate directly. In the present work we show that the vacuum can decay via poles in the effective action which are evident when it is written in terms of scattering variables.  相似文献   

8.
We extend the Abrams–Strogatz model for competition between two languages (Abrams and Strogatz in Nature 424:900, 2003) to the case of n (≥2) competing states (i.e., languages). Although the Abrams–Strogatz model for n=2 can be interpreted as modeling either majority preference or minority aversion, the two mechanisms are distinct when n≥3. We find that the condition for the coexistence of different states is independent of n under the pure majority preference, whereas it depends on n under the pure minority aversion. We also show that the stable coexistence equilibrium and stable monopoly equilibria can be multistable under the minority aversion and not under the majority preference. Furthermore, we obtain the phase diagram of the model when the effects of the majority preference and minority aversion are mixed, under the condition that different states have the same attractiveness. We show that the multistability is a generic property of the model facilitated by large n.  相似文献   

9.
In a recent work we have discussed how kinetic theory, the statistics of classical particles obeying Newtonian dynamics, can be formulated as a field theory. The field theory can be organized to produce a self-consistent perturbation theory expansion in an effective interaction potential. In the present work we use this development for investigating ergodic-nonergodic (ENE) transitions in dense fluids. The theory is developed in terms of a core problem spanned by the variables ρ, the number density, and B, a response density. We set up the perturbation theory expansion for studying the self-consistent model which gives rise to a ENE transition. Our main result is that the low-frequency dynamics near the ENE transition is the same for Smoluchowski and Newtonian dynamics. This is true despite the fact that term by term in a density expansion the results for the two dynamics are fundamentally different.  相似文献   

10.
We expand a set of notions recently introduced providing the general setting for a universal representation of the quantum structure on which quantum information stands. The dynamical evolution process associated with generic quantum information manipulation is based on the (re)coupling theory of SU (2) angular momenta. Such scheme automatically incorporates all the essential features that make quantum information encoding much more efficient than classical: it is fully discrete; it deals with inherently entangled states, naturally endowed with a tensor product structure; it allows for generic encoding patterns. The model proposed can be thought of as the non-Boolean generalization of the quantum circuit model, with unitary gates expressed in terms of 3nj coefficients connecting inequivalent binary coupling schemes of n + 1 angular momentum variables, as well as Wigner rotations in the eigenspace of the total angular momentum. A crucial role is played by elementary j-gates (6j symbols) which satisfy algebraic identities that make the structure of the model similar to “state sum models” employed in discretizing topological quantum field theories and quantum gravity. The spin network simulator can thus be viewed also as a Combinatorial QFT model for computation. The semiclassical limit (large j) is discussed.  相似文献   

11.
We establish an equivalence between the zero-field eight-vertex model and an Ising model (with four-spin interaction) in which each spin has L possible values, labeled 1, …, L, and two adjacent spins must differ by one (to modulus L). Such an Ising model can also be thought of as a generalized ice-type model and we will later show that the eigenvectors of the transfer matrix can be obtained by a Bethe-type ansatz.  相似文献   

12.
We analyze the behaviour of kinks and semiclassical bound states at finite temperatures by applying quantum statistics to the fluctuations which determine the quantum dynamics of these states. We consider two theories in one space dimension — the ?4 theory with a dynamical symmetry breaking and the Gross-Neveu model. For the ?4 theory, the one-loop temperature corrections are obtained by using temperature-dependent Green function techniques. We show that the same result can be obtained by applying quantum statistics to the fluctuations around the kink. For the Gross-Neveu model, the temperature dependence of the bound states, which correspond to time-independent field configurations, is obtained. We show that for every bound state there exists a critical temperature at which this state breaks up into its constituents. This critical temperature increases with the number of constituents of the bound state.  相似文献   

13.
This study proposes a new forcing scheme suitable for massively-parallel finite-difference simulations of stationary isotropic turbulence. The proposed forcing scheme, named reduced-communication forcing (RCF), is based on the same idea as the conventional large-scale forcing scheme, but requires much less data communication, leading to a high parallel efficiency. It has been confirmed that the RCF scheme works intrinsically in the same manner as the conventional large-scale forcing scheme. Comparisons have revealed that a fourth-order finite-difference model run in combination with the RCF scheme (FDM-RCF) is as good as a spectral model, while requiring less computational costs. For the range 80 < Reλ < 540, where Reλ is the Taylor microscale-based Reynolds number, large computations using the FDM-RCF scheme show that the Reynolds dependences of skewness and flatness factors have similar power-laws as found in previous studies.  相似文献   

14.
15.
We study the canonical quantization of the SU(n) WZNW model. Decoupling the chiral dynamics requires an extended state space including left and right monodromies as independent variables. In the simplest (n = 2) case we explicitly show that the zero modes of the monodromy extended SU(2) WZNW model give rise to a quantum group gauge theory in a finite-dimensional Fock space. We define the subspace of Uq(sl(2)) ⊗ Uq(sl(2))-invariant vectors on which the monodromy invariance is also restored and construct the physical space applying a generalized cohomology condition.  相似文献   

16.
《Physics letters. A》2001,288(2):62-68
In a recent paper, Walgate et al. (Phys. Rev. Lett. 85 (2000) 4972) demonstrated that any two orthogonal multipartite pure states can be optimally distinguished using only local operations. We utilise their result to show that this is true for any two multipartite pure states, in the sense of inconclusive discrimination. There are also certain regimes of conclusive discrimination for which the same also applies, although we can only conjecture that the result is true for all conclusive regimes. We also discuss a class of states that can be distinguished locally according to any discrimination measure, as they can be locally recreated in the possession of one party. A consequence of this is that any two maximally entangled states can always be optimally discriminated locally, according to any figure of merit.  相似文献   

17.
18.
A.A. Osipov  B. Hiller 《Annals of Physics》2006,321(11):2504-2534
The six-quark instanton induced ’t Hooft interaction, which breaks the unwanted UA (1) symmetry of QCD, is a source of perturbative corrections to the leading order result formed by the four-quark forces with the UL (3) × UR (3) chiral symmetry. A detailed quantitative calculation is carried out to bosonize the model by the functional integral method. We concentrate our efforts on finding ways to integrate out the auxiliary bosonic variables. The functional integral over these variables cannot be evaluated exactly. We show that the modified stationary phase approach leads to a resummation within the perturbative series and calculate the integral in the “two-loop” approximation. The result is a correction to the effective mesonic Lagrangian which may be important for the low-energy spectrum and dynamics of the scalar and pseudoscalar nonets.  相似文献   

19.
In conventional gauge theory, a charged point particle is described by a representation of the gauge group. If we propagate the particle along some path, the parallel transport of the gauge connection acts on this representation. The Lagrangian density of the gauge field depends on the curvature of the connection which can be calculated from the holonomy around (infinitesimal) loops. For Abelian symmetry groups, say G=U(1), there exists a generalization, known as p-form electrodynamics, in which (p−1)-dimensional charged objects can be propagated along p-surfaces and in which the Lagrangian depends on a generalized curvature associated with (infinitesimal) closed p-surfaces. In this article, we use Lie 2-groups and ideas from higher category theory in order to formulate a discrete gauge theory which generalizes these models at the level p=2 to possibly non-Abelian symmetry groups. An important feature of our model is that it involves both parallel transports along paths and generalized transports along surfaces with a non-trivial interplay of these two types of variables. Our main result is the geometric picture, namely the assignment of non-Abelian quantities to geometrical objects in a coordinate free way. We construct the precise assignment of variables to the curves and surfaces, the generalized local symmetries and gauge invariant actions and we clarify which structures can be non-Abelian and which others are always Abelian. A discrete version of connections on non-Abelian gerbes is a special case of our construction. Even though the motivation sketched so far suggests applications mainly in string theory, the model presented here is also related to spin foam models of quantum gravity and may in addition provide some insight into the role of centre monopoles and vortices in lattice QCD.  相似文献   

20.
We take the recently found charmonium state at 2.976 GeV to be the η c and show that it can be included in a charmonium model with relativistic corrections which reproduces the s-wave spectrum, the leptonic widths Γ(V→e + e?) and the p-wave splittings. The upsilon spectrum is discussed as are the effects of radial and pseudoscalar mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号