首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, theoretical calculations of detection limits for different total reflection techniques of X-ray fluorescence analysis are presented. Calculations include grazing incidence (TXRF) and gracing emission (GEXRF) conditions. These calculations are compared with detection limits calculated for conventional X-ray fluorescence (XRF). In order to compute detection limits, Shiraiwa and Fujino's model was used to calculate X-ray fluorescence intensities. This model makes certain assumptions and approximations to achieve the calculations, especially in the case of the geometrical conditions of the sample, and the incident and takeoff beams. Nevertheless, the calculated data of detection limits for conventional XRF and total-reflection XRF show a good agreement with previous results. The model proposed here allows us to analyze the different sources of background and the influence of the excitation geometry, which contribute to a better understanding of the physical processes involved in the XRF analysis by total reflection. Finally, a comparison between detection limits in total-reflection analysis at grazing incidence and at grazing emission is carried out. Here, a good agreement with the theoretical predictions of the Reciprocity Theorem is found, showing that, in theory, detection limits are similar for both techniques.  相似文献   

2.
We have applied grazing incidence X-ray photoemission spectroscopy to the determination of the thickness of SiO2 layers on Si, as well as surface carbon that is present. The measurements take advantage of the different optical constants of the layers. X-rays incident on the surface at grazing angle undergo total external reflection, where the fields in each layer are subject to highly non-linear changes as a function of incidence angle. X-ray photoemission excited by these fields gives information on atomic species, chemical state, and layer thickness. Simultaneous fits are made to the photoemission spectra in each layer. The method is illustrated for a thermally grown oxide layer and a native oxide on Si.  相似文献   

3.
Gibbs or Langmuir monolayers formed at the soft air/liquid interface are easy to handle and versatile model systems for material and life sciences. The phase state of the monolayers can be modified by lateral compression of the film while the layer structural changes are monitored by highly sensitive surface characterization techniques. The use of high brilliant synchrotron light sources for X-ray experiments is essential for the monolayer research. The present review highlights the recent achievements recorded in the monolayer field with a special emphasis on different synchrotron based X-ray characterizing methods as: grazing incidence X-ray diffraction, X-ray reflectivity and total reflection X-ray fluorescence. Some examples of single-chain surfactants, special sugar lipids, and semifluorinated compounds are given. Additionally, thin layers formed by peptides, polymers or nanoparticles are highlighted.  相似文献   

4.
Uniform sized PMMA-beads were deposited as a monolayer on silicon substrates using dip-coating techniques. High-resolution grazing incidence X-ray small angle scattering experiments were performed using a micrometer sized beam (mu-GISAXS) to determine the structure of a highly ordered monolayer with two-dimensional hexagonal arrays. A clear and strong interference pattern coming from the reflection and refraction effects of particles on flat surfaces with small uncorrelated roughnesses is shown. The quantitative analysis and simulations of the X-ray scattering pattern have been performed, and a detailed explanation of the analysis is reported. The results were directly compared and verified with atomic force microscopy (AFM) measurements and their resulting FFT spectra.  相似文献   

5.
Summary Layered structures play a fundamental role in modern technology. The characterization of these layers includes their composition, composition profile and their geometry. The structure of external and internal interfaces is of special interest. At grazing incidence, all X-ray techniques become surface and interface sensitive. This is the basis for a number of novel analytical tools which will be presented in this paper: X-ray reflection, fluorescence and diffuse scattering. Analytical expressions for these three quantities are given. The influence of interface roughness is included. The information obtained from these techniques is the thickness of the layers, their density, the interface roughness both perpendicular and parallel to the interface, and the depth profile of the individual atomic species. A number of examples will illustrate the capability of the techniques. Comparisons with results from other techniques will show their advantages and drawbacks.  相似文献   

6.
The applicability of a cut-off reflector, instead of the commonly used multilayer reflector, for grazing incidence X-ray fluorescence (GI-XRF) analysis is demonstrated. Owing to the precise angular adjustment possible in the total reflection X-ray fluorescence (TXRF) spectrometer developed in house, it is possible to adjust the cut-off reflector so as to pass all X-ray energies up to Cu-Kα, eliminating Cu-Kβ and higher X-ray energies emitted from a Cu target X-ray generator. The advantage of this technique is that one gets a higher flux of Cu-Kα radiation (>98%) compared to 80–90% from a good quality multilayer optics. Moreover, the same cut-off reflector, used at different grazing angles, serves the purpose for different primary beam energies. The suitability of such an arrangement for GI-XRF analysis for surface characterization has been demonstrated by analyzing a 50 ng aqueous residue of Fe on top of a float glass substrate. The GI-XRF results thus obtained are compared with those obtained using a multilayer monochromator in the primary beam as well as with theoretical calculations.  相似文献   

7.
In grazing-emission X-ray fluorescence spectrometry (GEXRF), the sample is irradiated at approximately normal incidence, and only that part of the fluorescence radiation is detected that is emitted at grazing angles. This configuration allows the use of wavelength-dispersive detection. This type of detection has the advantages of substantially better energy resolution at longer wavelengths (light elements, L and M lines of heavier elements) and a much larger dynamic range than the energy-dispersive detectors currently used in grazing X-ray techniques. Typical examples are presented of applications that are made possible by this new technique.  相似文献   

8.
A standard-free calibration procedure for total-reflection X-ray fluorescence has been developed which is based on the Fresnel theory for the reflection and refraction of X-rays on surfaces at grazing incidence. The technique requires only a pure metal surface as reference. The formalism is described in more detail for the measurement of contaminants on silicon wafer surfaces for both film-like and particulate distributions. Only natural constants are involved in the calculations. The resulting calibration factor is compared with those obtained from the droplet method normally applied elsewhere.  相似文献   

9.
Total reflection X-ray fluorescence spectrometry (TXRF) is presented as a genuine surface analytical technique. Its low information depth is shown to be the characteristic feature differentiating it from other energy dispersive X-ray fluorescence methods used for layer and surface analysis. The surface sensitivity of TXRF and its analytical capability together with the limitations of the technique are discussed here using typical applications including the contamination control of silicon wafers, thin layer analysis and trace element determination. For buried interfaces and implantation depth profiles in silicon a combination of TXRF and other techniques has been applied successfully. The TXRF method has the particular advantage of being calibrated without the need for standards. This feature is demonstrated for the example of the element arsenic.  相似文献   

10.
 The actual detection limits of total reflection X-ray fluorescence (TXRF) are determined and compared to those of destructive physical analytical methods like secondary ion mass spectrometry (SIMS) and chemical methods like vapour phase decomposition in combination with inductively coupled plasma-mass spectrometry (VPD-ICP-MS). The elements Ca, Ti, Cr, Fe, Cu were analyzed on a Si wafer with 10 nm thermal oxide using TXRF and VPD-ICP-MS. The deviation of the TXRF and the VPD-ICP-MS results is less than 30%. The thickness, composition and density of a Co/Ti two-layer stack were determined using angle dependent total reflection and grazing incidence X-ray fluorescence (A-TXRF). The obtained data were compared with X-ray reflectometry (XRR) and energy filtered transmission electron microscopy (EFTEM). The agreement between TEM and A-TXRF is excellent for the determination of the thickness of the metal layers. From these results we conclude, that A-TXRF permits the accurate determination of composition, thickness and density of thin metallic layers. The results are discussed regarding detection efficiency, acquisition time, accuracy and reproducibility.  相似文献   

11.
An intercomparison survey has been carried out in order to evaluate the performance of two related X-ray fluorescence techniques as compared to the achievements of several other analytical techniques applied for trace elements determination in drinking water. A relatively new technique, total reflection X-ray fluorescence (TXRF) and a novel related technique, grazing emission X-ray fluorescence (GEXRF) have been used for the analysis of a mineral water sample. The concentrations of the following elements have been determined: Na, Mg, K, Ca, Ni, Cu, Zn and Sr. The mineral water sample has also been analyzed by a number of other analytical techniques, routinely utilized in drinking water quality control. The analyses were performed in eleven laboratories which reported 286 individual determinations producing 75 laboratory means. From the obtained results, it can be concluded that the TXRF technique is suitable for a direct determination of heavy elements in drinking water (above potassium, Z = 19). This technique can compete with other analytical techniques routinely used in water quality monitoring. First results obtained with GEXRF spectrometry show that this technique can be successfully applied for the determination of low-Z elements in drinking water. However, results for sodium and magnesium were systematically too low, indicating that modifications of the quantification procedure may be required to improve the accuracy of determination for these light elements.  相似文献   

12.
Polystyrene film of about 50 nm in thickness on silicon wafer was obtained by spin-coating in tetrahydrofuran solution. The film exhibits a rough surface as shown by atomic force microscopy images and ellipsometry data. Furthermore, such surface roughness produced a characteristic lateral correlation peak in an “out-ofplane” scan in the synchrotron grazing incidence ultra-small angle X-ray scattering pattern. The film was treated with liquids of solvent and non-solvent sequentially, resulting in a process of swelling and precipitation of the polystyrene film. Such a solvent/non-solvent treatment completely changed the original surface structure of the film. Aggregates of polystyrene of different sizes were observed both in atomic force microscopy and synchrotron grazing incidence ultra-small angle X-ray scattering measurements. The results demonstrate that synchrotron grazing incidence ultra-small angle X-ray scattering is a unique means to investigate large area micro-structural features of thin films supported on smooth surfaces.  相似文献   

13.
An intercomparison survey has been carried out in order to evaluate the performance of two related X-ray fluorescence techniques as compared to the achievements of several other analytical techniques applied for trace elements determination in drinking water. A relatively new technique, total reflection X-ray fluorescence (TXRF) and a novel related technique, grazing emission X-ray fluorescence (GEXRF) have been used for the analysis of a mineral water sample. The concentrations of the following elements have been determined: Na, Mg, K, Ca, Ni, Cu, Zn and Sr. The mineral water sample has also been analyzed by a number of other analytical techniques, routinely utilized in drinking water quality control. The analyses were performed in eleven laboratories which reported 286 individual determinations producing 75 laboratory means. From the obtained results, it can be concluded that the TXRF technique is suitable for a direct determination of heavy elements in drinking water (above potassium, Z = 19). This technique can compete with other analytical techniques routinely used in water quality monitoring. First results obtained with GEXRF spectrometry show that this technique can be successfully applied for the determination of low-Z elements in drinking water. However, results for sodium and magnesium were systematically too low, indicating that modifications of the quantification procedure may be required to improve the accuracy of determination for these light elements. Received: 5 January 1998 / Revised: 17 February 1998 / Accepted: 18 February 1998  相似文献   

14.
This review focuses on recent results obtained by synchrotron X-ray techniques applied to the characterization of interfacial systems, with main emphasis on flat interfaces and on colloidal systems. The techniques covered are, for structural determinations: X-ray reflectivity (XRR), grazing incidence X-ray diffraction (GIXRD) and grazing incidence X-ray excited fluorescence (GIXF), while dynamics are investigated by X-ray photon correlation spectroscopy (XPCS) mainly in the grazing-incidence geometry (GIXPCS).The systems reviewed are, in order of growing complexity, floating Langmuir monolayers, supported films of lipids and proteins, polymeric films, buried interfaces, colloidal systems and gels formed by colloids either in 3D or in the form of 2D interfacial layers. Recent results are critically discussed, and some interesting directions of development are outlined, having also in mind new technical developments such as X-ray free electron laser sources and micro-focused synchrotron beamlines.  相似文献   

15.
We have achieved a growth of highly oriented crystalline pentacene thin films, with preferred a-b in-plane orientation with respect to the rubbing direction of a rubbed polymethylene surface. The polymethylene thin film, generated on a gold surface by gold-catalyzed decomposition of diazomethane, was annealed and gently rubbed in a fixed direction by a flannelette cloth to serve as an alignment layer during the deposition of pentacene molecules. Various surface analysis techniques, including reflection absorption IR spectroscopy (RAIRS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, grazing incidence X-ray diffraction (GIXD), and atomic force microscopy were used to elucidate the structural details of the polymethylene and the pentacene thin films deposited on it. Two crystalline morphologies of pentacene thin film were observed: the minor one of rod-like molecular crystals having their long axes of the crystals perpendicular to the rubbing direction, and the dominant one of platelet-like and layered crystals having the molecular axes stand near vertical to the surface. Moreover, GIXD revealed that the rubbing on polymethylene indeed induced a preferential azimuthal alignment of pentacene crystallites. The deposition of pentacene at 25 degrees C led to a twin growth of crystallites with the [110] direction predominately aligned perpendicular to the rubbing direction. In contrast, the pentacene deposition at 50 degrees C produced twinned crystallites of lower twin angle and the [120] direction aligned parallel to the rubbing direction.  相似文献   

16.
The internal nanostructure resulting from microphase separation in triblock copolymer films of polyparamethylstyrene-block-polystyrene-block-polyparamethylstyrene, P(pMS-b-Sd8-b-pMS), has been investigated with grazing incidence small angle neutron scattering (GISANS). X-ray reflectivity, grazing incidence small-angle X-ray scattering (GISAXS), optical microscopy and atomic force microscopy (AFM) complement the investigation. The influence of two limiting interfaces present in confinement is compared to the presence of only one surface. GISANS allows for the detection of structures in the very limited sample volume of confined films as well as for a depth sensitivity to probe the near free surface part of bulk films. With respect to the surface a perpendicular oriented lamella is observed. In contrast to the shrinkage of the characteristic lamellar spacing in confinement at the free surface, a slight increase is determined.  相似文献   

17.
In this work we evaluate the potential of grazing incidence X-ray scattering techniques in the investigation of laser-induced periodic surface structures (LIPSSs) in a series of strongly absorbing model spin-coated polymer films which are amorphous, such as poly(ethylene terephthalate), poly(trimethylene terephthalate), and poly(carbonate bisphenol A), and in a weaker absorbing polymer, such as semicrystalline poly(vinylidene fluoride), over a narrow range of fluences. Irradiation was performed with pulses of 6 ns at 266 nm, and LIPSSs with period lengths similar to the laser wavelength and parallel to the laser polarization direction are formed by devitrification of the film surface at temperatures above the characteristic glass transition temperature of the polymers. No crystallization of the surface is induced by laser irradiation, and crystallinity of the material prevents LIPSS formation. The structural information obtained by both atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS) correlates satisfactorily. Comparison of experimental and simulated GISAXS patterns suggests that LIPSSs can be well described considering a quasi-one-dimensional paracrystalline lattice and that irradiation parameters have an influence on the order of such a lattice.  相似文献   

18.
《Supramolecular Science》1997,4(1-2):83-99
Polysiloxanes grafted with both perfluoropolyether and alkyldisulfide side chains were synthesized and chemisorbed from dilute solutions to fresh gold surfaces. Polymer monolayer films form spontaneously from disulfide-gold mediated interfacial attachment, yielding highly hydrophobic films approximately 30 A thick. X-ray photoelectron spectroscopy measurements show that perfluoropolyether segments enrich the outer interface of these polymer films, consistent with partial phase segregation of perfluorospecies near the film interface. Time-of-flight secondary ion mass spectrometry of these films supports the presence of a perfluoropolyether-rich overlayer. Polarized grazing incidence reflection FTIR and NEXAFS spectra show no evidence for a consistent film anisotropy or off-vertical chain organization in these films, in contrast to recent observations with perfluoroalkyl-grafted polymer thin film analogues.  相似文献   

19.
Electron probe microanalysis (or Scanning electron microscope-energy dispersive X-ray spectrometry) has been studied under grazing-exit conditions. That is, characteristic X-rays are detected at a very small take-off (exit) angle; the technique is known as grazing-exit electron probe microanalysis (GE-EPMA). Fundamental aspects, instrumentation, and characteristics of grazing-exit electron probe X-ray microanalysis method are described here. Since the observation depth decreases as the exit angle decreases, theoretically to a few nanometers, surface analysis is possible in grazing-exit electron probe X-ray microanalysis. Of course, the size of the electron beam is also small—less than 1 μm, enabling localized surface analysis. In the case of total reflection X-ray spectrometry that allows surface analysis, the whole sample surface must be flat. However, the requirement for flatness is not as strict in grazing-exit electron probe X-ray microanalysis. Grazing-exit electron probe X-ray microanalysis measurements can easily be applied using a commercially available electron probe microanalysis (or Scanning electron microscope-energy dispersive X-ray spectrometry) instrument. To change and control the exit angle in grazing-exit electron probe X-ray microanalysis, the inclination of the sample stage or movement of the X-ray detector is all that is required. Theoretically, this study shows that grazing-exit electron probe X-ray microanalysis would be useful in improving the lateral resolution of the sample surface. In addition, the study demonstrates that grazing-exit electron probe X-ray microanalysis can be applied successfully for surface, thin-film, and particle analyses. As an optional method of electron probe microanalysis, grazing-exit electron probe X-ray microanalysis will be useful in expanding the research fields of normal electron probe microanalysis.  相似文献   

20.
Measurements of Langmuir pressure/area isotherms, rheology, grazing incidence X-ray diffraction (GIXD), and grazing incidence diffuse X-ray scattering out of the specular plane (GIXOS) have been used to investigate the influence of a hydrosol containing charged mineral nanoparticles on the thermodynamic and structural properties of a DPPC monolayer. The mineral adsorption layer that is formed via electrostatic interaction underneath the lipid layer alters the thermodynamic properties of the phospholipid monolayer in terms of maximal achievable compression, compressibility, and phase behavior. Modifications appear in the latter case as a coolinglike effect. Rheology measurements of the bulk viscoelastic properties revealed a stabilizing effect of the transient bulk network on the surfactant layer. The lipid chain lattice is found to be reorganized and adapted to the internal atomic structure of the mineral particles. A model for the superposition of Bragg rods from the lipid chains and the minerals is applied to separate these scattering contributions. In the vicinity of the mineral particles, the (2) reflection for DPPC on a liquid substrate was found, indicating strongly suppressed fluctuations at the surface. An estimation of the Debye-Waller factor associated with the lipid layer organization is used to quantify the damping of fluctuations within the lipid matrix due to the rigidifying and stabilizing effect of the mineral particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号