首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an analysis of bulk (1)H NMR chemical shifts for a series of biochemically relevant molecular crystals in analogy to the well-known solvent NMR chemical shifts. The term bulk shifts denotes the change in NMR frequency of a gas-phase molecule when it undergoes crystallization. We compute NMR parameters from first-principles electronic structure calculations under full periodic boundary conditions and for isolated molecules and compare them to the corresponding experimental fast magic-angle spinning solid-state NMR spectra. The agreement between computed and experimental lines is generally very good. The main phenomena responsible for bulk shifts are packing effects (hydrogen bonding and pi-stacking) in the condensed phase. By using these NMR bulk shifts in well-ordered crystalline model systems composed of biologically relevant molecules, we can understand the individual spectroscopic signatures of packing effects. These local structural driving forces, hydrogen bonding, pi-stacking, and related phenomena, stand as a model for the forces that govern the assembly of much more complex supramolecular aggregates. We show to which accuracy condensed-phase ab initio calculations can predict structure and structure-property relationships for noncovalent interactions in complex supramolecular systems.  相似文献   

2.
理论计算有助于复杂的有机和生物系统光谱的鉴定.对于核磁共振光谱,固体结晶中的化学位移和四极耦合常数(QCC)受到邻近的分子和晶格的氢键和范德华作用较大的影响,从而显示出与气态单体分子不同的NMR参数.因此,在固体晶体NMR参数的理论计算中有必要将氢键和范德华作用这两个因素考虑进来.基于周期性方法,本文采用L-Ala-Gly二肽和硝基苯晶体作为模型体系来考察该方法计算NMR参数的精度.研究结果显示周期结构模型能够将分子间的氢键和范德华作用考虑进来,得到的化学位移和QCC值明显优于传统的单分子模型和超分子模型得到的结果,采用该方法计算的结果能够重现NMR实验结果.  相似文献   

3.
Fumaramide derivatives were analyzed in solution by (1)H NMR spectroscopy and in the solid state by X-ray crystallography in order to characterize the formation of CH...O interactions under each condition and to thereby serve as models for these interactions in peptide and protein structure. Solutions of fumaramides at 10 mM in CDCl(3) were titrated with DMSO-d(6), resulting in chemical shifts that moved downfield for the CH groups thought to participate in CH...O=S(CD(3))(2) hydrogen bonds concurrent with NH...O=S(CD(3))(2) hydrogen bonding. In this model, nonparticipating CH groups under the same conditions showed no significant change in chemical shifts between 0.0 and 1.0 M DMSO-d(6) and then moved upfield at higher DMSO-d(6) concentrations. At concentrations above 1.0 M DMSO-d(6), the directed CH...O=S(CD(3))(2) hydrogen bonds provide protection from random DMSO-d(6) contact and prevent the chemical shifts for participating CH groups from moving upfield beyond the original value observed in CDCl(3). X-ray crystal structures identified CH...O=C hydrogen bonds alongside intermolecular NH...O=C hydrogen bonding, a result that supports the solution (1)H NMR spectroscopy results. The solution and solid-state data therefore both provide evidence for the presence of CH...O hydrogen bonds formed concurrent with NH...O hydrogen bonding in these structures. The CH...O=C hydrogen bonds in the X-ray crystal structures are similar to those described for antiparallel beta-sheet structure observed in protein X-ray crystal structures.  相似文献   

4.
The nuclear magnetic resonance (NMR) chemical shift is extremely sensitive to molecular geometry, hydrogen bonding, solvent, temperature, pH, and concentration. Calculated magnetic shielding constants, converted to chemical shifts, can be valuable aids in NMR peak assignment and can also give detailed information about molecular geometry and intermolecular effects. Calculating chemical shifts in solution is complicated by the need to include solvent effects and conformational averaging. Here, we review the current state of NMR chemical shift calculations in solution, beginning with an introduction to the theory of calculating magnetic shielding in general, then covering methods for inclusion of solvent effects and conformational averaging, and finally discussing examples of applications using calculated chemical shifts to gain detailed structural information.  相似文献   

5.
1H and 13C NMR chemical shifts are exquisitely sensitive probes of the local environment of the corresponding nuclei. Ultimately, direct determination of the chemical shifts of sterols in their membrane environment has the potential to reveal their molecular interactions and dynamics, in particular concerning the hydrogen-bonding partners of their OH groups. However, this strategy requires an accurate and efficient means to quantify the influence of the various interactions on chemical shielding. Herein the validity of Hartree-Fock and DFT calculations of the 13C and 1H NMR chemical shifts of cholesterol and ergosterol are compared with one another and with experimental chemical shifts measured in solution at 500 MHz. A computational strategy (definition of basis set, simpler molecular models for the sterols themselves and their molecular complexes) is proposed and compared with experimental data in solution. It is shown in particular that the effects of hydrogen bonding with various functional groups (water as a hydrogen-bond donor and acceptor, acetone) on NMR chemical shifts in CDCl3 solution can be accurately reproduced with this computational approach.  相似文献   

6.
In high resolution solid-state CP/MAS13C NMR spectra of several hydroxybenzaldehydes, the downfield shifts due to hydrogen bonding for the vary inversely with the O...O hydrgen-bonddistances. Conformations of the aldehyde groups in the solid state are determined by the chemical shifts of the ortho carbons.  相似文献   

7.
Molecular dynamics simulation results on hydrogen bonding in mixtures of methanol with CO2 at supercritical, liquid-like conditions are compared to 1H NMR spectroscopic data that have recently become available. The molecular models are parametrized using vapor-liquid equilibrium data only, which they reliably describe. A new molecular model for methanol of Lennard-Jones plus point charge type is presented. This molecular methanol model is investigated in terms of its capability to yield hydrogen-bonding statistics. Simple assumptions are made regarding the assignment of NMR chemical shifts to the different types of hydrogen-bonded species. Only two state-independent parameters are fitted to the large NMR data set on the basis of hydrogen-bonding statistics from molecular simulations. Excellent agreement between the molecular simulation results and the NMR data is found. This shows that the molecular models of the simple type studied here cannot only describe thermodynamic properties but also structural effects of hydrogen bonding in solutions.  相似文献   

8.
The self-assembled supramolecular host [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can encapsulate cationic guest molecules within its hydrophobic cavity and catalyze the chemical transformations of bound guests. The cavity of host 1 is lined with aromatic naphthalene groups, which create a magnetically shielded interior environment, resulting in upfield shifted (1-3 ppm) NMR resonances for encapsulated guest molecules. Using gauge independent atomic orbital (GIAO) DFT computations, we show that (1)H NMR chemical shifts for guests encapsulated in 1 can be efficiently and accurately calculated and that valuable structural information is obtained by comparing calculated and experimental chemical shifts. The (1)H NMR chemical shift calculations are used to map the magnetic environment of the interior of 1, discriminate between different host-guest geometries, and explain the unexpected downfield chemical shift observed for a particular guest molecule interacting with host 1.  相似文献   

9.
Proton NMR shielding constants and chemical shifts for hydrogen guests in small and large cages of structure II clathrates are calculated using density-functional theory and the gauge-invariant atomic-orbital method. Shielding constants are calculated at the B3LYP level with the 6-311++G(d,p) basis set. The calculated chemical shifts are corrected with a linear regression to reproduce the experimental chemical shifts of a set of standard molecules. The calculated chemical shifts of single hydrogen molecules in the small and large structure II cages are 4.94 and 4.84 ppm, respectively, which show that within the error range of the method the H2 guest molecules in the small and large cages cannot be distinguished. Chemical shifts are also calculated for double occupancy of the hydrogen guests in small cages, and double, triple, and quadruple occupancy in large cages. Multiple occupancy changes the chemical shift of the hydrogen guests by approximately 0.2 ppm. The relative effects of other guest molecules and the cage on the chemical shift are studied for the cages with multiple occupancies.  相似文献   

10.
The (13)C NMR chemical shifts for alpha-D-lyxofuranose, alpha-D-lyxopyranose (1)C(4), alpha-D-lyxopyranose (4)C(1), alpha-D-glucopyranose (4)C(1), and alpha-D-glucofuranose have been studied at ab initio and density-functional theory levels using TZVP quality basis set. The methods were tested by calculating the nuclear magnetic shieldings for tetramethylsilane (TMS) at different levels of theory using large basis sets. Test calculations on the monosaccharides showed B3LYP(TZVP) and BP86(TZVP) to be cost-efficient levels of theory for calculation of NMR chemical shifts of carbohydrates. The accuracy of the molecular structures and chemical shifts calculated at the B3LYP(TZVP) level is comparable to those obtained at the MP2(TZVP) level. Solvent effects were considered by surrounding the saccharides by water molecules and also by employing a continuum solvent model. None of the applied methods to consider solvent effects was successful. The B3LYP(TZVP) and MP2(TZVP)(13)C NMR chemical shift calculations yielded without solvent and rovibrational corrections an average deviation of 5.4 ppm and 5.0 ppm between calculated and measured shifts. A closer agreement between calculated and measured chemical shifts can be obtained by using a reference compound that is structurally reminiscent of saccharides such as neat methanol. An accurate shielding reference for carbohydrates can be constructed by adding an empirical constant shift to the calculated chemical shifts, deduced from comparisons of B3LYP(TZVP) or BP86(TZVP) and measured chemical shifts of monosaccharides. The systematic deviation of about 3 ppm for O(1)H chemical shifts can be designed to hydrogen bonding, whereas solvent effects on the (1)H NMR chemical shifts of C(1)H were found to be small. At the B3LYP(TZVP) level, the barrier for the torsional motion of the hydroxyl group at C(6) in alpha-D-glucofuranose was calculated to 7.5 kcal mol(-1). The torsional displacement was found to introduce large changes of up to 10 ppm to the (13)C NMR chemical shifts yielding uncertainties of about +/-2 ppm in the chemical shifts.  相似文献   

11.
This work shows the modification of barbituric acid (BA) chemical shifts by dimethylsulphoxide (DMSO) molecules. The discussed changes are caused by creation of the H-bonded associates formed by barbituric acid with DMSO in solution. Free molecule of barbituric acid, the cluster of BA with two DMSO molecules and two different clusters of BA with four DMSO units are taken into consideration. The chemical shifts of these systems have been calculated and the obtained results have been compared with experimental data. Theoretical calculations predict a significant downfield shift for imino protons of barbituric acid involved in intermolecular-N-H...DMSO hydrogen bonds. The influence of the solvent molecules on other nuclei chemical shifts, especially protons of barbituric acid methylene group, is also reported. The calculations have involved Hartree-Fock and several Density Functional Theory methods. All methods correctly describe experimental 1H and 13C NMR spectra of barbituric acid. The best consistence between experiment and theory is observed for the BLYP functional. Four approximations of magnetic properties calculations embedded in the Gaussian’98 package have been tested. The results of the performed calculations indicate that from a practical point of view the GIAO method should be preferred.  相似文献   

12.
Carbazole functionalized polyisocyanides are known to exhibit excellent electronic properties (E. Schwartz, et al., Chemistry of Materials, 2010, 22, 2597). The functionalities and properties of such materials crucially depend on the organization and stability of the polymer structure. We combine solid-state Nuclear Magnetic Resonance (NMR) experiments with first-principles calculations of isotropic chemical shifts, within the recently developed converse approach, to rationalize the origin of isotropic chemical shifts in the crystalline monomer l-isocyanoalanine 2-(9H-carbazol-9-yl) ethyl amide (monomer 1) and thereby gain insight into the structural organization of its polymer (polymer 2). The use of state-of-the-art solid-state NMR experiments combined with Density Functional Theory (DFT) based calculations allows an unambiguous assignment of all proton and carbon resonances of the monomer. We were able to identify the structure stabilising interactions in the crystal and understand the influence of the molecular packing in the crystal structure on the chemical shift data observed in the NMR spectra. Here the Nuclear Independent Chemical Shift (NICS) approach allows discriminating between 'physical' interactions amongst neighboring molecules such as ring-current effects and 'chemical' interactions such as hydrogen bonding. This analysis reveals that the isocyanide monomer is stabilized by multiple hydrogen bonds such as a bifurcated hydrogen bond involving -N-H, -C-H and O=C- moieties and Ar-H···C≡N- hydrogen bonding (Ar = aromatic group). Based on the geometrical arrangement it is postulated that the carbazole units are involved in the weak σ-π interactions giving rise to a Herringbone packing of the molecules. The chemical shift analysis of the polymer spectra readily establishes the existence of N-H···O=C hydrogen bonds despite the limited resolution exhibited by the polymer spectra. It is also elucidated that the relative arrangement of the carbazole units in the polymer differs significantly from that of the monomer.  相似文献   

13.
We present the results of the first quantum chemical investigations of 1H NMR hyperfine shifts in the blue copper proteins (BCPs): amicyanin, azurin, pseudoazurin, plastocyanin, stellacyanin, and rusticyanin. We find that very large structural models that incorporate extensive hydrogen bond networks, as well as geometry optimization, are required to reproduce the experimental NMR hyperfine shift results, the best theory vs experiment predictions having R2 = 0.94, a slope = 1.01, and a SD = 40.5 ppm (or approximately 4.7% of the overall approximately 860 ppm shift range). We also find interesting correlations between the hyperfine shifts and the bond and ring critical point properties computed using atoms-in-molecules theory, in addition to finding that hyperfine shifts can be well-predicted by using an empirical model, based on the geometry-optimized structures, which in the future should be of use in structure refinement.  相似文献   

14.
We have applied computational protocols based on DFT and molecular dynamics simulations to the prediction of the alkyl 1H and 13C chemical shifts of alpha-d-glucose in water. Computed data have been compared with accurate experimental chemical shifts obtained in our laboratory. 13C chemical shifts do not show a marked solvent effect. In contrast, the results for 1H chemical shifts provided by structures optimized in the gas phase are only fair and point out that it is necessary to take into account both the flexibility of the glucose structure and the strong effect exerted by solvent water thereupon. Thus, molecular dynamics simulations were carried out to model both the internal geometry as well as the influence of solvent molecules on the conformational distribution of the solute. Snapshots from the simulation were used as input to DFT NMR calculations with varying degrees of sophistication. The most important factor that affects the accuracy of computed 1H chemical shifts is the solute geometry; the effect of the solvent on the shielding constants can be reasonably accounted for by self-consistent reaction field models without the need of explicitly including solvent molecules in the NMR property calculation.  相似文献   

15.
Selected theoretical methods, basis sets and solvation models have been tested in their ability to predict (31)P NMR chemical shifts of large phosphorous-containing molecular systems in solution. The most efficient strategy was found to involve NMR shift calculations at the GIAO-MPW1K/6-311++G(2d,2p)//MPW1K/6-31G(d) level in combination with a dual solvation model including the explicit consideration of single solvent molecules and a continuum (PCM) solvation model. For larger systems it has also been established that reliable (31)P shift predictions require Boltzmann averaging over all accessible conformations in solution.  相似文献   

16.
Weak hydrogen bonding in uracil and 4-cyano-4'-ethynylbiphenyl, for which single-crystal diffraction structures reveal close CH...O=C and C[triple bond]CH...N[triple bond]C distances, is investigated in a study that combines the experimental determination of 1H, 13C, and 15N chemical shifts by magic-angle spinning (MAS) solid-state NMR with first-principles calculations using plane-wave basis sets. An optimized synthetic route, including the isolation and characterization of intermediates, to 4-cyano-4'-ethynylbiphenyl at natural abundance and with 13C[triple bond]13CH and 15N[triple bond]C labeling is described. The difference in chemical shifts calculated, on the one hand, for the full crystal structure and, on the other hand, for an isolated molecule depends on both intermolecular hydrogen bonding interactions and aromatic ring current effects. In this study, the two effects are separated computationally by, first, determining the difference in chemical shift between that calculated for a plane (uracil) or an isolated chain (4-cyano-4'-ethynylbiphenyl) and that calculated for an isolated molecule and by, second, calculating intraplane or intrachain nucleus-independent chemical shifts that quantify the ring current effects caused by neighboring molecules. For uracil, isolated molecule to plane changes in the 1H chemical shift of 2.0 and 2.2 ppm are determined for the CH protons involved in CH...O weak hydrogen bonding; this compares to changes of 5.1 and 5.4 ppm for the NH protons involved in conventional NH...O hydrogen bonding. A comparison of CH bond lengths for geometrically relaxed uracil molecules in the crystal structure and for geometrically relaxed isolated molecules reveals differences of no more than 0.002 A, which corresponds to changes in the calculated 1H chemical shifts of at most 0.1 ppm. For the C[triple bond]CH...N[triple bond]C weak hydrogen bonds in 4-cyano-4'-ethynylbiphenyl, the calculated molecule to chain changes are of similar magnitude but opposite sign for the donor 13C and acceptor 15N nuclei. In uracil and 4-cyano-4'-ethynylbiphenyl, the CH hydrogen-bonding donors are sp2 and sp hybridized, respectively; a comparison of the calculated changes in 1H chemical shift with those for the sp3 hybridized CH donors in maltose (Yates et al. J. Am. Chem. Soc. 2005, 127, 10216) reveals no marked dependence on hybridization for weak hydrogen-bonding strength.  相似文献   

17.
We applied a multiscale modeling approach that involves the statistical-mechanical three-dimensional reference interaction site model with the Kovalenko-Hirata closure approximation (3D-RISM-KH molecular theory of solvation) as well as density functional theory (DFT) of electronic structure to study the role of water in aggregation of the asphaltene model compound 4,4'-bis(2-pyren-1-yl-ethyl)-2,2'-bipyridine (PBP) [X. Tan, H. Fenniri and M. R. Gray, Energy Fuels, 2008, 22, 715]. The solvation free energy and potential of mean force predicted by 3D-RISM-KH reveal favorable pathways for disaggregation of PBP dimers in pure versus water-saturated chloroform solvent. The water density distribution functions elucidate hydrogen bonding preferences and water bridge formation between PBP monomers. The ΔG(298) values of -5 to -7 kcal mol(-1) for transfer of water molecules in chloroform to a state interacting with PBP molecules are in agreement with experimental results. Geometry optimization and thermochemistry analysis of PBP dimers with and without water bridges using WB97Xd/6-31G(d,p) predict that both PBP dimerization and dimer stabilization by water bridges are spontaneous (ΔG(298) < 0). The (1)H NMR chemical shifts of PBP monomers and dimers predicted using the gauge-independent atomic orbital method and polarizable continuum model for solvation in chloroform are in an excellent agreement with the experimental results for dilute and concentrated PBP solutions in chloroform, respectively [X. Tan, H. Fenniri and M. R. Gray, Energy Fuels, 2009, 23, 3687]. The DFT calculations of PBP dimers with explicit water show that bridges containing 1-3 water molecules lead to stabilization of PBP dimers. Additional water molecules form hydrogen bonds with these bridges and de-shield the PBP protons, negating the effect of water on the (1)H(C3) NMR chemical shift of PBP, in agreement with experiment. The ΔG(298) results show that hydrogen bonding to water and water-promoted polynuclear assembly bridging is as important as π-π interactions for asphaltene aggregation.  相似文献   

18.
用变温溶液核磁共振氢谱研究了不同组成的乙烯-乙烯醇共聚物在二甲亚砜溶液中的氢键相互作用.结果表明,乙烯醇单元中羟基的信号随温度升高而线性地向高场位移,且不同的三单元组中羟基信号的位移速率不同,表明羟基形成的氢键强度与链结构间存在相关性.  相似文献   

19.
运用核磁共振技术, 研究了室温离子液体1-丁基-3-甲基咪唑四氟硼酸盐([C4mim][BF4])在重水和氘代氯仿中的聚集行为. 实验结果表明, 随着混合体系中离子液体摩尔分数的增加, 在重水中, 离子液体阳离子上各氢原子的化学位移向低场移动, 且呈现了先急剧变化, 后趋于平缓的变化趋势; 在氘代氯仿中, 离子液体阳离子上H2的化学位移向高场移动, H4和H5以及与氮原子直接相连的甲基和亚甲基上的氢原子的化学位移都向低场移动, 且各氢原子的核磁共振信号发生了变化. 根据质量作用定律及1H NMR化学位移随浓度的变化关系计算了[C4mim][BF4]在重水中的临界聚集浓度和聚集数, 并在离子液体阴、阳离子缔合以及离子液体与溶剂相互作用的基础上对实验结果进行了讨论.  相似文献   

20.
[reaction: see text] Resonance-assisted intramolecular hydrogen bonding in both polar aprotic and nonpolar solutions of 4-(dimethylamino)-2'-hydroxychalcone (DMAHC) has been investigated by variable-temperature proton NMR spectroscopy. In both nonpolar and polar solvents, the signal for the phenolic hydrogen moves downfield as the temperature is lowered. In each solvent system studied, a linear relationship between chemical shift and temperature was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号