首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The elastic (modulus of elasticity and equilibrium high-elastic modulus) and thermal (volume coefficients of thermal expansion below and above the glass transition temperature) properties of compositions based on ÉD-5 epoxy resin cured with polyethylenepolyamine have been investigated. Quartz powder and aluminoborosilicate glass powder were employed as fillers at concentrations from 0 to 0.413. The thermal expansion coefficients of the compositions were studied in a dilatometer, in which the specimen is free of mechanical loads. The Young's modulus at 25°C and the equilibrium high-elastic modulus at 125°C of the compositions were determined in the compression regime in an instrument based on the IZV-2 optical length gage. The thermal expansion coefficients of the polymer matrix were calculated with allowance for the elastic properties of the resin and the filler. It is shown that, as the filler concentration increases, the thermal and elastic properties of the resin in the filled system change. This can be interpreted as a change in the properties of the resin as it approaches the surface of the filler particles. Increased interaction between the filler surface and the epoxy resin tends to stiffen the polymer network.Scientific Research Institute of Precision Technology, Moscow. Translated from Mekhanika Polimerov, No. 6, pp. 1018–1022, November–December, 1969.  相似文献   

2.
The steady state flow in very thin annuli has been studied analytically for the case where the annular gap is much smaller than the radius of the inner cylinder and for the outer cylinder rotating at constant angular speed and the inner cylinder at rest. The cylinders were subjected to two different thermal boundary conditions. The exponential effect of temperature on the relaxation time and the viscosity coefficient was accounted into the governing differential equations using Nahme’s law. Effects of viscous dissipation as well as εDe2 (viscoelastic index for SPTT constitutive equation) on the dimensionless velocity and temperature profiles have been investigated. Results show that while the properties of the fluid depend on temperature, the velocity and temperature profiles are different compared to those obtained with constant physical properties. The Nahme–Griffith number increases whereas εDe2 as a viscoelastic index decreases when temperature dependent physical properties are considered. In addition, the results indicate that the viscous dissipation has a sensible effect on heat transfer and the Nusselt number decreases with an increase in the Nahme–Griffith number.  相似文献   

3.
A theoretical investigation was carried out to examine the possibilities of a structural approach to prediction of elastic constants, creep functions, and thermal properties of multiphase polymer composite materials filled with composite or hollow spherical Inclusions of several types. The problem of determining effective properties of the composite was solved by generalizing the effective medium method, a variant of the self-consistent method, for the case of a four-phase kernel-shell-matrix-equivalent homogeneous medium model. Exact analytical expressions for the bulk modulus thermal expansion coefficient, thermal conductivity coefficient, and specific heat were obtained. The solution for the shear modulus is given in the form of a nonlinear equation whose coefficients are the solution of a system of 12 linear equations.To be presented at the Ninth International Conference on the Mechanics of Composite Materials, Riga, October 1995.Published in Mekhanika Kompozitnykh Materialov, Vol. 31, No. 4, pp. 462–472, July–August, 1995.  相似文献   

4.
Based on the nonequilibrium thermodynamic theory, a new thermo-viscoelastic relation at finite strain is proposed. Under the assumption that the specific heat at a fixed strain and fixed internal variables can be regarded as a constant, a new expression for the free energy which decouples the mechanical and the thermal effects is derived. Through an analysis of the mesoscopic deformation mechanism of solid polymers, a set of internal variables is introduced, and an internal-variable constitutive theory in thermo-viscoelasticity at finite strain is formulated. An explicit expression of a thermoviscoelastic constitutive relation is obtained for solid polymers in the case where their molecular network has a randomly oriented distribution function at reference configuration. Moreover, the relationship between the relaxation time and the temperature is also discussed. The viscoelastic constitutive theory proposed in reference is only a linear approximation of the present theory.  相似文献   

5.
By means of a thermodynamic approach it is demonstrated that the mechanical properties of homogenous polymeric materials depend only on specific volume. Expressions are derived for the entropy and volume coefficient of thermal expansion as functions of hydrostatic pressure and temperature. It is shown that for both crystalline and amorphous polymeric materials the bulk modulus depends on reduced temperature.Institute of Polymer Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, No. 5, pp. 825–829, September–October, 1970.  相似文献   

6.
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid over a flat sheet with a linear velocity in the presence of thermal radiation and non-uniform heat source. The thermal conductivity is assumed to vary as a linear function of temperature. The basic equations governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed equations are solved analytically by regular perturbation method. Numerical solution of the problem is also obtained by the efficient shooting method, which agrees well with the analytical solution. The effects of various physical parameters such as viscoelastic parameter, Chandrasekhar number, Prandtl number, variable thermal conductivity parameter, Eckert number, thermal radiation parameter and non-uniform heat source/sink parameters which determine the temperature profiles are shown in several plots and the heat transfer coefficient is tabulated for a range of values of said parameters. Some important findings reported in this work reveals that combined effect of variable thermal conductivity, radiation and non-uniform heat source have significant impact in controlling the rate of heat transfer in the boundary layer region.  相似文献   

7.
A model for the thermomechanical behaviour of a beam which allows for the general evolution of material damage is presented and investigated. One end of the beam is fixed while the other is constrained to move between two stops. The contact of the free tip with the stops is modelled by the normal compliance condition. The thermal interaction between the stops and the free tip is described by a heat exchange condition where the heat transfer coefficient is a general function of the gaps between the tip and the stops. The effects on the mechanical properties of the material due to crack expansion are described by a damage field, which measures the decrease in the load-bearing capacity of the material. The damage evolves as a constrained diffusion process in which the microcracks that develop may grow or disappear. The mathematical model consists of a coupled system of energy--elasticity equations together with a nonlinear parabolic inclusion for the damage field. The existence of a local solution is established using truncation, penalization, and a priori estimates.  相似文献   

8.
We consider viscoelastic solids undergoing thermal expansion and exhibiting hysteresis effects due to plasticity or phase transformations. Within the framework of generalized standard solids, the problem is described in a three-dimensional setting by the momentum equilibrium equation, the flow rule describing the dependence of the stress on the strain history, and the heat transfer equation. Under appropriate regularity assumptions on the data, a local existence result for this thermodynamically consistent system is established, by combining existence results for ordinary differential equations in Banach spaces with a fixed-point argument. Then global estimates are obtained by using both the classical energy estimate and more specific techniques for the heat equation introduced by Boccardo and Gallouët. Finally a global existence result is derived.  相似文献   

9.
Taking Young’s modulus, thermal expansion coefficient and density to be the functions of the radial coordinate, a closed form solution of rotating circular disks made of functionally graded materials subjected to a constant angular velocity and a uniform temperature change is proposed in this paper. Excellent agreement with the solution from Mathematica 5.0 indicates the correctness of the proposed closed form solution. Distributions of the radial displacement and stresses in the disks are determined with the proposed approach and how material properties, temperature change, geometric size and different material coefficients affect deformations and stresses is investigated.  相似文献   

10.
Taking Young’s modulus, thermal expansion coefficient and density to be the functions of the radial coordinate, a closed form solution of rotating circular disks made of functionally graded materials subjected to a constant angular velocity and a uniform temperature change is proposed in this paper. Excellent agreement with the solution from Mathematica 5.0 indicates the correctness of the proposed closed form solution. Distributions of the radial displacement and stresses in the disks are determined with the proposed approach and how material properties, temperature change, geometric size and different material coefficients affect deformations and stresses is investigated.  相似文献   

11.
Real gas effects in condensing nozzle flows are discussed by the virial equation of state truncated after the second virial coefficient. The thermal choking conditions in nozzles previously derived for a perfect condensible vapor are generalized to include real gas effects. For these cases it is shown that the critical amount of heat necessary to thermally choke the flow can be defined explicitly only for the expansion of a pure vapor.Alexander von Humboldt Fellow.The flow Mach number is usually taken as the local frozen Mach number.  相似文献   

12.
This paper presents a theoretical investigation on the finite time thermodynamic performance for an irreversible Brayton cycle heat pump (BCHP) coupled to counter-flow heat exchangers. The heating load density, i.e. the ratio of heating load to the maximum specific volume in the cycle, is taken as the optimization objective. Relations between heating load density and pressure ratio and between COP (coefficient of performance) and pressure ratio for BCHP in which the irreversibilities of heat resistance losses in the hot and cold-side heat exchangers and non-isentropic losses in the compression and expansion processes are derived. The analytical expression obtained for the cycle performance enabled its optimization through addressing the effects of mechanical and thermal inefficiencies of all components comprising the cycle. The influences of the temperature ratio of the reservoirs, the efficiencies of the compressor and expander and the effectiveness of the heat exchangers on the heating load density are provided. The cycle performance optimizations are performed by searching the optimum distribution of heat conductance of the hot- and cold-side heat exchangers for the fixed total heat exchanger inventory and the optimum heat capacity rate matching between the working fluid and the heat reservoirs. The BCHP design with heat loading density optimization leads to a smaller size of all equipments comprising the heat pump.  相似文献   

13.
《Applied Mathematical Modelling》2014,38(19-20):4625-4639
In this paper, the magneto-thermo-mechanical response of a functionally graded magneto-elastic material (FGMM) annular variable-thickness rotating disk is investigated. The material properties namely material stiffness, heat conduction coefficient, thermal expansion coefficient, mass density and magnetic permeability are assumed to vary continuously along the radial direction according to a power law. The thickness profile of the disk placed in a uniform magnetic field and subjected to the thermal load is assumed to be hyperbolic in nature. The effects of the magnetic field, grading index and geometric nonlinearity on the mechanical and thermal stresses of the disk are investigated. For a specific value of the grading index the maximum radial stress due to magneto-mechanical load in a mounted FGMM disk with hyperbolic convergent profile is found away from the center. This result is different from other thickness profile disks where the radial stresses are always at the center. It is observed that unlike radial stress in a mounted FGM disk subjected to mechanical load only where it is always tensile, the radial stress due to magneto-thermal load in a mounted FGMM disk can be both tensile and compressive type. It is seen that a decrease in the value of grading index invokes shifting of the location of the maximum temperature in FGMM disk with hyperbolic convergent profile towards the outer surface of the disk.  相似文献   

14.
泄漏是干气密封失效的主要形式,而密封环端面又是主要的泄漏通道.针对特定工况,利用密封环的结构参数对密封气膜性能的影响程度,通过有限元正交仿真,来优选密封环的端面结构参数;另外,利用稳态热分布的有限元仿真,通过热-结构耦合,获得密封动环的热变形及动环材料属性对密封特性的影响关系.研究结果显示,除弹性模量之外,导热系数、Poisson(泊松)比和热膨胀系数均与密封动环的热变形成拟线性关系.研究结果对干气密封环的优化设计具有指导和参考价值.  相似文献   

15.
This work deals with the simulation of fusion welding by the Finite Element Method. The implemented models include a moving heat source, temperature dependence of thermo-physical properties, elasto-plasticity, non-steady state heat transfer, and mechanical analysis. The thermal problem is assumed to be uncoupled from the mechanical one, so the thermal analysis is performed separately and previously to the mechanical analysis at each time step. The mechanical problem is based on the thermal history. A special treatment is performed on mechanical elements during the liquid/solid and solid/liquid phase changes to account for stress states. The three-dimensional stress state of a butt-welded joint is obtained as an example of an application.  相似文献   

16.
We present an efficient numerical scheme (based on complex variable techniques) to calculate the effective thermal expansion coefficients of a composite containing unidirectional periodic fibers. Moreover, the mechanical behavior of the fibers incorporates interface effects allowing the ensuing analytical model of the composite to accommodate deformations at the nanoscale. The resulting ‘nanocomposite’ is subjected to a uniform temperature variation which leads to periodic deformations within the plane perpendicular to the fibers and uniform deformations along the direction of the fibers. These deformation fields are determined by analyzing a representative unit cell of the composite subsequently leading to the corresponding effective thermal expansion coefficients. Numerical results are illustrated via several physical examples. We find that the influence of interface effects on the effective thermal expansion coefficients (in particular that corresponding to the transverse direction in the plane perpendicular to the fibers) decays rapidly as the fibers become harder. In addition, by comparing the results obtained here with those from effective medium theories, we show that the latter may induce significant errors in the determination of the effective transverse thermal expansion coefficient when the fibers are much softer than the matrix and the fiber volume fraction is relatively high.  相似文献   

17.
空心球复合材料热弹性性质的一些精确结果   总被引:1,自引:0,他引:1  
本文基于所提出的基体均匀场方法研究了空心球增强复合材料的热弹性性质·导出了均匀边界条件激发的局部热场和力学场量的关系,并进而得到了复合材料等效热弹性性质之间的精确关系·对于具有某种特定内外径比的空心球所构成的宏观各向同性复合材料,如果基体和空心球的热膨胀系数相同,可以证明其等效体积模量和线膨胀系可以精确地确定·  相似文献   

18.
Conclusions A theoretical and experimental investigation was carried out to examine the possibilities of a structural approach for prediction of elastic constants, creep functions and thermophysical characteristics of hybrid polymer composites reinforced with anisotropic fibres of several types. The theoretical solutions were obtained by generalizing the self-consistent method for the case of a three phase model. The effects of brittle fibre breakdown under tension in the direction of reinforcement of a unidirectional hybrid composite were studied under conditions of a short-term loading and a long-term creep. It has been shown that a creep of viscoelastic fibres plays a principal role in creep of the hybrid composite. It is just this creep that significantly increases the fibre damage during creep of the composite.A variant of the solution has been proposed for predicting the thermorheologically complex behavior of hybrid composites containing not only elastic but also viscoelastic thermorheologically simple components with different temperature-time shift factors. The peculiarities of thermal expansion of hybrid composites and the possibilities for a purposeful control of thermal expansion coefficients by hybridization were studied. The considered thermal interval included a region of transition of the polymer matrix from a glass state into a viscoelastic one.The control tests were performed for specimens of organic/glass, organic/carbon, glass/carbon and organic/boron polymer composites with different ratios of fibre volume contents. On the whole, the obtained accuracy of predicting the characteristics of the examined hybrid composites may be considered as acceptable for engineering applications.Published in Mekhanika Kompozitnykh Materialov, Vol. 30, No. 3, pp. 299–313, May–June, 1994.  相似文献   

19.
20.
研究了多孔介质平板通道中,Darcy流体发展传热强迫对流非局部热平衡下,固相骨架和孔隙流体的温度分布特征.考虑流体流动方向的热传导以及固相和流相相互作用的粘性耗散,根据非局部热平衡的两能量方程模型,得到了常壁温度时多孔介质固相骨架温度和孔隙流体温度的解析解.证明了当两相间的热交换系数趋于无穷大时,两能量方程的温度解趋于局部热平衡时一能量方程的温度解.针对不同的无量纲参数,给出了固相和流相的温度分布状态,通过参数研究,揭示了非局部热平衡强迫对流时温度对无量纲参数的依赖关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号