首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solubility measurements of several nonpolar gases (He, Ne, Ar, Kr, Xe, H2, N2, CH4, C2H4, C2H6, CF4, SF6, and CO2) in 2,2,2-trifluoroethanol at 25°C and 101.33 kPa partial pressure of gas are reported. Gibbs energy for the solution process at 25°C is evaluated from the experimental values of the solubility of gases expressed as mole fraction. Lennard-Jones 6–12 pair potential parameters for 2,2,2-trifluoroethanol are estimated by using the scaled particle theory (SPT); and experimental solubilities are compared with those calculated from the values of these parameters through the SPT model.  相似文献   

2.
Solubility measurements of several nonpolar gases (He, Ne, Ar, Kr, Xe, H2, D2, N2, CH4, C2H4, C2H6, CF4, and SF6) in tetrahydropyran at the temperature range 0 to 30°C and 101.33 kPa partial pressure of gas are reported. Thermodynamic functions for the solution process (Gibbs energy, enthalpy, and entropies) at 25°C are evaluated from the experimental values of the solubility of gases as mole fraction and their variation with the temperature. Lennard-Jones 6–12 pair potential parameters for tetrahydropyran are estimated by using the scale particle theory (SPT); and experimental solubilities are compared with the calculated values using this model. Experimental solubilities of gases in tetrahydropyran and intermolecular potential parameters are compared with those obtained for the same gases in other cycloethers.  相似文献   

3.
Solubility measurements of several nonpolar gases (He, Ne, Ar, Kr, Xe, H2, D2, N2, CH4, C2H4, C2H6, CF4 and SF6) in tetrahydrofuran from 0 to 30°C and 101.33 kPa partial pressure of gas are reported. Thermodynamic functions for the solution process (Gibbs energy, enthalpy, and entropies) at 25°C are evaluated from experimental values of gas solubility as mole fractions and their variation with temperature. Lennard-Jones 6–12 pair potential parameters for tetrahydrofuran are estimated using the scale particle theory; experimental solubilities as mole fraction are compared with values calculated using this theory.  相似文献   

4.
Solubilities of noble gases He, Ne, Ar, Kr and Xe in mixtures of {water + 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP)} at 298.15 K and 101.33 kPa partial pressure of gas are reported. A polynomial dependence of the solubilities on the mole fraction of the binary liquid mixture is found. The Henry’s constants at the vapor pressure of the mixture, the standard changes in the Gibbs free energy for the solution process and for the solvation process, and the so-called excess Henry’s constant are calculated. The results have been compared with those obtained by scaled particle theory (SPT).  相似文献   

5.
The vapor pressure of pure 2-methyl-1-propanol and 3-methyl-1-butanol, components called congeners that are present in aroma of wine, pisco, and other alcoholic beverages, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa with an estimated uncertainty <0.2%. The measurements were performed at temperature ranges of (337 to 392) K for 2-methyl-1-propanol and (358 to 422) K for 3-methyl-1-butanol. Data were correlated using a Wagner-type equation with standard deviations of 0.09 kPa for the vapor pressure of 2-methyl-1-propanol and 0.21 kPa for 3-methyl-1-butanol. The experimental data and correlation were compared with data selected from the literature.  相似文献   

6.
Vapour pressures of butanenitrile +2-methyl-1-propanol or +2-methyl-2-propanol at several temperatures between 278.15 and 323.15 K were measured by a static method. Excess molar enthalpies and volumes were also measured at T = 298.15 K. Reduction of the vapour pressures to obtain activity coefficients and excess molar Gibbs free energies was carried out by fitting the vapour pressure data to the Redlich-Kister correlation according to Barker's method. Azeotropic mixtures with a minimum boiling temperature were observed over the whole temperature range, except for 2-methyl-2-propanol at T = 323.15 K.  相似文献   

7.
Freezing in winter cereals is a complex phenomenon that can affect various plant tissues differently. To better understand how freezing affects specific tissue in the over wintering organ (crown) of winter cereal crops, non-acclimated oats (Avena sativa L.) were gradually frozen to ?3 °C and tissue damage during recovery was compared to plants that had been supercooled to ?3 °C and then frozen suddenly. Percentage of total water frozen, was the same whether crowns were frozen suddenly or gradually although the rate of freezing was considerably different. For example, all available water froze within 3 h in suddenly frozen crowns but it took more than 15 h for all available water to freeze in gradually frozen crowns. When plants were suddenly frozen, cells in the apical meristem were disrupted and apparently killed. In these plants re-growth was limited or non-existent. In contrast, the apical region of plants that were slowly frozen appeared undamaged but extensive vessel plugging was observed in cells of the lower crown, possibly from accumulation of phenolics or from microbial proliferation. These histological observations along with the calorimetric analysis suggested that the apical region was killed by intracellular freezing when frozen suddenly while the crown core was damaged by a process, which either induced production of putative phenolic compounds by the plant and/or permitted what appeared to be microbial proliferation in metaxylem vessels.  相似文献   

8.
In this work, new experimental results of the vapour-liquid equilibrium (VLE) of CO2 in aqueous 2-amino-2-methyl-1-propanol (AMP) and piperazine (PZ) have been presented in the temperature range of 298-328 K and PZ concentration range of 2-8 mass%, keeping the total amine concentration in the solution at 30 mass%. The partial pressures of CO2 were in the range of 0.1-1450 kPa. A thermodynamic model was developed to correlate and predict the VLE of CO2 in aqueous AMP + PZ. The electrolyte nonrandom two liquid (ENRTL) theory has been used to develop the VLE model for the quaternary system (CO2 + AMP + PZ + H2O) to describe the equilibrium behaviour of the solution. The experimental data from this work and data available in the literature were used to regress the ENRTL interaction parameters. The model predictions are in good agreement with the experimental data of CO2 solubility in aqueous blends of this work as well as those reported in the literature. The current model can also predict speciation, heat of absorption, pH of the CO2 loaded solution, and amine volatility.  相似文献   

9.
10.
Solubility measurements of the gases He, Ne, Ar, Kr, Xe, H2, D2, N2, CH4, C2H4, C2H6, CF4, SF6, and CO2 in formaldehyde diethyl acetal in the range of –10 to 30°C, and a gas partial pressure of 1 atmosphere (101.32 kPa) are reported. Standard changes of thermodynamic functions for the solution process are evaluated. The scaled particle theory is used to obtain the effective Lennard-Jones 6, 12 pair potential parameters for formaldehyde diethyl acetal. Experimental solubilities values are compared with those obtained from the application of the scaled particle theory to gas liquid solubility.  相似文献   

11.
Solubility of methane in octane + ethanol was measured at temperatures ranging from 303.15 K to 333.15 K and pressures ranging from 2.60 MPa to 12.01 MPa. Experimental data were analyzed using the Soave-Redlich-Kwong equation of state with three types of mixing rules, and the estimated average deviation from the experimental solubility data was less than 3.5 %.  相似文献   

12.
Buffering-out is a new liquid–liquid phase separation phenomenon observed in mixtures containing a buffer as a mass separating agent. The (liquid + liquid) equilibrium (LLE) and (solid + liquid + liquid) equilibrium (SLLE) data were measured for the ternary systems {3-[4-(2-hydroxyethyl)piperazin-1-yl]propanesulfonic acid (EPPS) buffer + 1-propanol, 2-propanol, or 2-methyl-2-propanol + water} at T = 298.15 K under atmospheric pressure. The phase boundary data were fitted to an empirical equation relating to the concentrations of organic solvent and buffer. The effective excluded volume (EEV) values of EPPS were obtained from the phase boundary data. The phase-separation abilities of the investigated aliphatic alcohols were discussed. The reliability of the experimental tie-lines was satisfactorily confirmed by the Othmer–Tobias correlation. The experimental tie-lines data for the ternary systems have been correlated using the NRTL activity coefficient model. The separation of these aliphatic alcohols from their azeotropic aqueous mixtures is of particular interest to industrial process. The addition of the EPPS as an auxiliary agent breaks the (1-propanol + water) and (2-methyl-2-propanol + water) azeotropes. The possibility of using the new phase separation systems in the extraction process is demonstrated by using different dyestuffs.  相似文献   

13.
The emissions of methane (CH4), a powerful greenhouse gas (GES), contribute to the increase in GES concentration level in the atmosphere. For this reason, the importance of controlling CH4 emissions of anthropogenic origin has increased over the last decades. Physicochemical and biological processes are available for treating CH4. For this reason, such properties as the solubility of CH4 in aqueous solutions and organic solvents are of great relevance in different applications in environmental engineering and biotechnology. In this study, the solubility of CH4 was determined at 298 K and 101.3 kPa in organic solvents, such as polyoxyethylenesorbates (Tween 20, Tween 40, and Tween 60), and linear alcohols (methanol, ethanol, and butan-1-ol) alone and in their admixtures. Admixtures of methanol with butan-1-ol exhibited the highest solubility of CH4, of around 0.49 g m−3 of solvent, whereas the solubility of CH4 in linear alcohols varied from 0.167 g m−3 to 0.41 g m−3 of solvent. In the case of Tweens, CH4 solubility decreased with the hydrophilic-lipophilic balance (HLB) number.  相似文献   

14.
With an isothermal dilution calorimeter excess enthalpies have been determined at 298.15 K for 2-propanol + cyclohexane and 2-propanol + benzene + cyclohexane mixtures. The results are fitted with an associated-solution model. Predicted excess enthalpies for the ternary mixture agree well with the experimental results.  相似文献   

15.
Journal of Solution Chemistry - The solubility of ammonia in toluene has been measured at 398&nbsp;K and at pressures up to 340&nbsp;kPa using a static, synthetic and isochoric technique....  相似文献   

16.
This paper reports densities and speeds of sound for the binary mixtures of (1,3-dioxolane or 1,4-dioxane) with (2-methyl-1-propanol or 2-methyl-2-propanol) at the temperatures (298.15 and 313.15) K. Excess volumes and excess isentropic compressibility coefficients have been calculated from experimental data and fitted by means of a Redlich-Kister type equation. The ERAS model has been used to calculate the excess volumes of the four systems at both temperatures.  相似文献   

17.
The vapor pressure of pure 1-methoxy-2-propanol and 2-methoxyethanol, commonly used as co-solvents in inks, paints, coatings, organic/water solutions among many other applications, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa. The measurements were performed at temperature ranges of (342 to 412) K for 1-methoxy-2-propanol and (346 to 417) K for 2-methoxyethanol. The maximum likelihood method was used to estimate the parameters of the Antoine equation, the parameters of an extended Antoine equation and the Wagner equation were determined by non linear least squares method. The three models showed root mean square deviations (rmsd) of 0.39%, 0.38%, and 0.29%, and 0.37%, 0.33%, and 0.32%, for 1-methoxy-2-propanol and 2-methoxyethanol, respectively. Additionally, the experimental data and correlation were compared with those available in the literature.  相似文献   

18.
Consistent isobaric vapour–liquid equilibrium data have been measured for 2-butanone + ethanol, 2-butanone + 1-propanol, and 2-butanone + 2-propanol at 20 and 101.3 kPa. The binary systems 2-butanone + ethanol and 2-butanone + 2-propanol present a minimum boiling azeotrope at both pressures, and show that the azeotropic compositions is strongly dependent on pressure. The equilibrium data were correlated using the Wilson, NRTL, and UNIQUAC models for which the parameters are reported.  相似文献   

19.
Excess molar enthalpies HE have been measured for liquid binary mixtures of 2,2′-oxybis[propane] (diisopropylether ‘DIPE’), or, benzene + butan-1-ol, +2-methylpropan-1-ol (isobutanol), +2-methyl-2-ene-1-propanol (isobutenol), +n-heptane at 303.15 K and constant pressure using a C80, Setaram calorimeter. A Redlich–Kister type equation was used to correlate experimental results.  相似文献   

20.
Solubility measurements of sulfur compounds in supercritical fluids are required in order to determine the feasibility of supercritical extraction for removing them from gasoline and diesel fuel. In this work, solubility of thiophene in CO2 and in CO2 + 1-propanol mixtures were measured from 313 to 363 K using an apparatus based on the static–analytical method. Vapor–liquid equilibria (VLE) data of binary mixtures were fitted to the Peng–Robinson equation of state (EoS) with classical mixing rules. The binary interaction parameters (kij) obtained were used to predict the VLE data of ternary systems. The calculated values given by this simple model agree well to the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号