首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.  相似文献   

2.
The purpose of this study was to evaluate the physical–chemical properties of starch (SF), mangaba (MF), and mangaba/starch-based films (MSF), using differential thermal analysis, thermogravimetry/derivative thermogravimetry, infrared spectroscopy, mechanical profile, and scanning electron microscopy. The films were prepared by casting process using sucrose and propyleneglycol as plasticizers. The thermal profiles of MF and MSF were similar and showed increased thermal stability. The mechanical properties of MF and MSF presented decreases of tensile strength and elastic modulus when compared with SF. The MSF showed the best thermal and mechanical characteristics.  相似文献   

3.
Cornstarch derivative (ES), prepared using diethyl sulfate as an etherifying reagent, was blended with castor oil-based polyurethane (PU) prepolymer to obtain a series of semi-interpenetrating polymer network (semi-IPN) materials, named as UES films. Simultaneously, other kinds of semi-IPN (UBS2) were prepared from PU and benzyl starch (BS2) to compare the effects of the substitute groups. The differences in the miscibility and properties of the two series of materials were investigated using attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy, dynamic mechanical thermal analysis, ultraviolet-visible spectroscopy, water-sensitivity and tensile testing. The experimental results revealed that UBS2 films exhibit stronger interfacial attraction and better phase mixing than the UES films, as a result of specific interactions between the PU hard segments and BS2 phenyl groups. The optical transmittance, water-resistivity, tensile strength, and elongation at break of the UBS2 films were clearly higher than those of the UES films containing the same concentration of PU. In particular, the miscibility and properties of the UES film with 40 wt.-% ES, were very poor, whereas the semi-IPN films containing 70 wt.-% benzyl starch still had a certain miscibility and good properties. Therefore, the phenyl groups play an important role in the improvement of the miscibility and properties of the semi-IPN materials.  相似文献   

4.
The studied samples were prepared from polyethylene (PE) polymer which was coated with modified polycaprolactone (PCL) film in order to obtain bilayer films. Thin PCL film was modified with casein/aluminum oxide compound to enhance vapor permeability as well as mechanical and thermal properties of PE/PCL films. Casein/aluminum oxide modifiers were used in order to achieve some functional properties of polymer film that can be used in various applications, e.g., reduction of water vapor permeability (WVTR) and good mechanical and thermal properties. Significant improvement was observed in mechanical properties, especially in tensile strength as well as in water vapor values. Samples prepared with aluminum oxide particles indicated significantly lower values up to 60%, and samples that were prepared with casein and 5% Al2O3 showed the lowest WVTR value.  相似文献   

5.
Nanocomposites films have been processed from a filler and a matrix having the same nature, i.e. waxy maize starch. The filler consists of nanoplatelet-like starch particles obtained as an aqueous suspension by acid hydrolysis of starch granules and the matrix was prepared by plasticization and disruption of starch granules with water and sorbitol. Nanocomposite films were obtained by casting and evaporating the mixture of the aqueous suspension of starch nanocrystals with the gelatinized starch. The resulting films were conditioned before testing and the effect of accelerated ageing in moist atmosphere was investigated. The thermal properties of the nanocomposite films were determined from DSC measurements and the mechanical characterization was performed in both the linear and nonlinear range.  相似文献   

6.
Silica nanoparticle/mesoporous silica composite films were prepared by direct mixing with mechanical stirring and thermal imidization. The structural morphology was elucidated by scanning electron microscopy and the surface of the film was imaged by atomic force microscopy. The functional groups and desorption process of the films were elucidated by Fourier transform infrared spectroscopy and thermal desorption spectroscopy. The mechanical properties were investigated using a nanoindenter system. The gel matrix and the filler are very compatible because they have similar molecular content. The composite films had a higher mechanical strength than pure porous silica film. Their strength is related to the silica nanoparticle content. The interfacial compatibility, dispersion effect, and interfacial strength also affect the mechanical strength of composite films.  相似文献   

7.
This study aims to optimize the formulation of composite films based on chicken skin gelatin with incorporation of rice starch (10–20%, w/w) and curcumin (0.03–0.10%, w/v). The effect of their interaction on film's tensile strength (TS), elongation at break (EAB), water vapor permeability (WVP) and antioxidant properties (DPPH%) were investigated using a response surface methodology-central composite design (RSM-CCD). The optimized film formulation was further validated to indicate the validity of the prediction model. The optimum conditions of the film were selected with incorporation of rice starch at 20% (w/w) and curcumin at 0.03% (w/v). The optimized film formulation has revealed better mechanical properties with low WVP value and good antioxidant activity. The results showed that optimized composite films formulation based on chicken skin gelatin with the incorporation of rice starch and curcumin has proving good validation of model prediction and can be effectively utilized in food packaging industry.  相似文献   

8.
采用阳离子聚苯乙烯微球作为模板,钛酸四丁酯为钛源,氨水为催化剂,制备了中空TiO_2微球.采用X射线衍射、扫描电镜及比表面测定仪对其形貌和结构进行了表征,并考察了模板粒径、钛源用量以及催化剂用量对中空TiO_2微球形貌的影响.通过物理共混法将其引入至聚丙烯酸酯乳液中并成膜,研究了复合薄膜的保温性能、抗紫外性能及力学性能.结果表明,锐钛矿相中空TiO_2微球模板粒径、钛源用量以及催化剂用量影响中空TiO_2微球的空心尺寸、壁厚及壳层致密性.中空TiO_2微球可显著提升聚丙烯酸酯薄膜的保温性能、抗紫外性能和力学性能.采用不同粒径的模板制备的中空TiO_2微球对复合薄膜的各项性能均有影响,其中模板粒径为140 nm时复合薄膜性能最优,光反射率提升63%,导热系数降低27%,且在波长小于360 nm范围内,紫外透过率几乎为0,抗张强度增加100%,断裂伸长率提升62%.  相似文献   

9.
The aim of our work was to investigate formation of multilayer films containing biocompatible polycation poly-L-lysine (PLL) and α- or β-casein. Since in the neutral pH casein is negatively charged, it has been used as a polyanionic layer for the film build-up. Casein containing films were formed at surface of Si/SiO2 wafers and their thickness was measured by ellipsometry. The effect of ionic strength of PLL and casein solutions was investigated. After the multilayer films were formed, they were contacted with solutions having various pH and salts to determine film stability under these conditions. Additionally the response of the thickness of PLL/casein films to the temperature variation in the range of 5–45?°C was also analyzed. Formation and stability of casein containing films was also investigated on surfaces of titanium and stainless steel. We used fluorescently labeled protein to monitor the amount of casein in the film and its change after treatment with solutions containing calcium ions.  相似文献   

10.
Low-density polyethylene/plasticized starch/polycaprolactone blends were processed by conventional extrusion, injection molding, and film blowing techniques. The glass transition temperatures of plasticized starch were determined using differential scanning calorimetry. The blends were characterized by mechanical property measurements and scanning electron microscopy. The blend properties were found to depend not only on composition but also on the generated morphology. In films the fine dispersion of polycaprolactone phase in the polyethylene/starch matrix resulted in mechanical property increase, while in injection specimens there was property decrease due to phase coalescence. It appears that the different conditions existing at the two different shaping processes i.e. film blowing and injection molding could account for the final obtained morphology.  相似文献   

11.
Optically reflective and/or electrically conductive surface-silvered polyimide films have been prepared by thermal curing of the (1,1,1-trifluoro-2,4-pentadionato) silver(I) (AgTFA)-containing poly(amic acid) derived from pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (4,4′-ODA) in dimethylacetamide. Films with specular reflectivity of 20-40% and surface electrical resistivity less than 7 Ω/sq were obtained. Two different thermal curing cycles were applied for the imidization and silver reduction process, and film conductivity were only obtained under rapid thermal treatment. The metallized films exhibit mechanical properties close to that of the parent polyimide films. Films were characterized by dynamic mechanical thermal analysis, X-ray diffraction, transmission electron microscopy, atomic force microscopy and mechanical measurements.  相似文献   

12.
Vapor deposition polymerized (VDP) polyimide (PI) thin films were prepared and characterized by using thermogravimetrical analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR), and bending-beam techniques. The film properties investigated were thermal stability, wet-etching characteristics, surface topology, imidization characteristics, internal stress upon curing and thermal cycling, and hygroscopic stress upon moisture diffusion. Markedly different characteristics are observed for the VDP-PI films when comparing with the conventional ones. They seem denser in film structure and have better mechanical properties, but are somewhat less stable in thermal resistance. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
With the goals of reducing negative environmental impacts and improving the novel food packaging industry, edible films composed of Chinese yam mucilage (DOM) and starch were prepared via a casting method. The films were characterized by analysing the physical, morphological, mechanical and barrier properties, performing a thermal analysis, and finally performing an acute toxicity analysis in rats that ingested the film-forming solutions. Four film samples (F1, F2, F3 and F4) were prepared to evaluate the effects of ultrasound and the addition of sodium carboxymethyl cellulose (CMC) on DOM. DOM films presented a compact and uniform structure without toxicological responses, and the optimal DOM film-forming solution contained 20.0% mucilage, 10.0% starch, 1.0% glycerol, and 2.0% CMC after a 1 h ultrasound treatment. The solubility, swelling degree and water vapour permeability (WVP) of DOM film were 41.11%, 95.03% and 55.30 g mm/m2·d·kPa, respectively. The functional groups analysed by FT-IR and thermal degradation were not affected by the different formulations. Therefore, the non-toxic and bio-degradable films prepared using DOM have the great potential to be used in applications in food packaging.  相似文献   

14.
This paper reports on the results of using unbleached sugar cane bagasse nanofibres (average diameter 26.5 nm; aspect ratio 247 assuming a dry fibre density of 1,500 kg/m3) to improve the physico-chemical properties of starch-based films. The addition of bagasse nanofibres (2.5 to 20 wt%) to modified potato starch (i.e. soluble starch) reduced the moisture uptake by up to 17 % at 58 % relative humidity. The film’s tensile strength and Young’s modulus increased by up to 100 % (3.1 to 6.2 MPa) and 300 % (66.3 to 198.3 MPa) respectively with 10 and 20 wt% fibre addition. However, the strain at yield dropped by 50 % for the film containing 10 wt% fibre. Models for composite materials were used to account for the strong interactions between the nanofibres and the starch matrix. The storage and loss moduli as well as the glass transition temperature (Tg) obtained from dynamic mechanical thermal analysis, were increased with the starch-nanofibre films indicating decreased starch chain mobility due to the interacting effect of the nanofibres. Evidence of the existence of strong interactions between the starch matrix and the nanofibres was revealed from detailed Fourier transform infra-red and scanning electron microscopic evaluation.  相似文献   

15.
The main shortcomings of biodegradable starch/poly(vinyl alcohol) (PVA) film are hydrophilicity and poor mechanical properties. With an aim to overcome these disadvantages, cornstarch was methylated and blend films were prepared by mixing methylated-cornstarch (MCS) with PVA. The mechanical properties, water resistance and biodegradability of the MCS/PVA film were investigated. It was found that MCS/PVA film had higher water resistance than the native starch/PVA film. However, the water resistance of MCS/PVA films did not have significant difference with the increase in the degree of substitution (DS) of the methylated starch from 0.096 to 0.864. Enzymatic, microbiological and soil burial biodegradation results indicated that the biodegradability of the MCS/PVA film strongly depended on the starch proportion in the film matrix. The degradation rate of starch in the starch/PVA film was hindered by blending starch with PVA. Both tensile strength and percent elongation at break of the MCS/PVA film were improved as DS of the methylated starch increased. Conversely, increasing the methylated starch proportion in film matrix deteriorated both tensile strength and percent elongation at break of the film.  相似文献   

16.
The aim of this investigation is to obtain a polymer-based hybrid material with biodegradability, biocompatibility, and good mechanical properties and this object was realized via. in-situ introduction of the unmodified calcium carbonate (CaCO3) into a poly(l-lactic acid) (PLLA) matrix. As verified by the measurements from scanning electron microscopy (SEM), optical microscopy, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), the hybrid films which possesses a uniform dispersion of calcium carbonate CaCO3 in nano-meter scale, mechanically robustness and thermal stability could be fabricated by a mineralization-alike process. For example, the storage modulus increases from 441 MPa of neat PLLA to 1034 MPa of hybrid film containing 2% (w/w) CaCO3. In addition, the hybrid films display a significant improvement in its UV-exposure resistance.  相似文献   

17.
Antimicrobial active films based on poly(lactic acid) (PLA) were prepared with poly(ε‐caprolactone) (PCL) and thymol (0, 3, 6, 9, and 12 wt%) by solvent casting methods. The films were characterized by thermal, structural, mechanical, gas barrier, and antimicrobial properties. Scanning electron microscopy analysis revealed that the surface of film became rougher with certain porosity when thymol was incorporated into the PLA/PCL blends. Thymol acted as plasticizers, which reduce the intermolecular forces of polymer chains, thus improving the flexibility and extensibility of the films. The addition of PCL into the pure PLA film decreased the glass transition temperature of the films. The presence of thymol decreased the crystallinity of PLA phase, but did not affect the thermal stability of films. Water vapor barrier properties of films slightly decreased with the increase of thymol loading. The antimicrobial properties of thymol containing films showed a significant activity against Escherichia coli and Listeria monocytogenes. The results indicated the potential of PLA/PCL/thymol composites for applications in antimicrobial packaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Self-standing composite films consisting of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibril (TOCN) and anionic poly(acrylamide) (PAM) in various weight ratios were prepared by casting and drying of homogeneous mixtures of aqueous TOCN dispersion and PAM solution. PAM/TOCN composite films consisting of 25 % PAM and 75 % TOCN had clearly higher Young’s modulus (13.9 GPa) and tensile strength (266 MPa) than 100 % TOCN film (10.8 GPa and 223 MPa, respectively) or 100 % PAM film (4.9 GPa and 78 MPa, respectively), showing that PAM molecules have mechanical reinforcement ability in TOCN matrix. Some attractive interactions are likely formed between TOCN element surfaces and PAM molecules. In contrast, no such mechanical improvements were observed for poly(vinyl alcohol)/TOCN or oxidized starch/TOCN composite films prepared as references. Moreover, the mechanical properties of the PAM/TOCN composite films were further improved by controlling molecular mass and branching degree of the PAM. The high optical transparency and low coefficient of thermal expansion of the 100 % TOCN film were mostly maintained in the TOCN composite film containing 25 % PAM.  相似文献   

19.
A hyperbranched polyester polythiol(H20-SH) was synthesized and characterized by FTIR spectral analysis, 1H-NMR spectral analysis and GPC analysis. H20-SH was added into the formulation of UV-curable epoxy acrylate networks based on thiol-acrylate chemistry. The effects of H20-SH on polymerization kinetics, thermal and mechanical properties of thiol-epoxy acrylate networks were investigated by Real-time infrared spectroscopy, dynamic mechanical analysis (DMA), thermogravimetric (TGA), tensile test and water absorption characterization. Results show that epoxy acrylate resin with the addition of H20-SH massively reduces oxygen inhibition, improves the uniformity of cured films and enhances the tensile strength of the films. However, the thermal stability and glass transition temperature (Tg) decreases with the increasing amount of H20-SH.  相似文献   

20.
This research is aimed at characterizing the thermal, mechanical, and morphological properties of carbon nanotubes (CNTs) reinforced poly(amide-imide) (PAI) composites having thiazol and amino acid groups which were prepared by sonication-assisted solution compounding. To increase the compatibility between the PAI matrix and CNTs, carboxyl-functionalized multiwall CNTs (MWCNTs-COOH) were used in this study. The MWCNTs were dispersed homogeneously in the PAI matrix while the structure of the polymer and the MWCNTs structure are stable in the preparation process as revealed by transmission electron microscopy. MWCNT/PAI composite films have been prepared by casting a solution of precursor polymer containing MWCNTs into a thin film, and its tensile properties were examined. The thermal stability, Young’s modulus, and tensile strength of PAI were greatly improved by the incorporation of MWCNTs and their good dispersion. Composites were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal gravimetric analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号