首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The density of states of Dirac fermions with a random mass on a two‐dimensional lattice is considered. We give the explicit asymptotic form of the single‐electron density of states as a function of both energy and (average) Dirac mass, in the regime where all states are localized. We make use of a weak‐disorder expansion in the parameter g/m2, where g is the strength of disorder and m the average Dirac mass for the case in which the evaluation of the (supersymmetric) integrals corresponds to non‐uniform solutions of the saddle point equation. The resulting density of states has tails which deviate from the typical pure Gaussian form by an analytic prefactor.  相似文献   

2.
The influence of non-magnetic doping on the thermodynamic properties of two-leg S = 1/2 spin ladders is studied in this paper. It is shown that, for a weak interchain coupling, the problem can be mapped onto a model of random mass Dirac (Majorana) fermions. We investigate in detail the structure of the fermionic states localized at an individual mass kink (zero-modes) in the framework of a generalized Dirac model. The low-temperature thermodynamic properties are dominated by these zero-modes. We use the single-fermion density of states, known to exhibit the Dyson singularity in the zero-energy limit, to construct the thermodynamics of the spin ladder. In particular, we find that the magnetic susceptibility χ diverges at T → 0 as 1/T ln2(1/T), and the specific heat behaves as C 1/ln3(1/T). The predictions on magnetic susceptibility are consistent with the most recent results of quantum Monte Carlo simulations on doped ladders with randomly distributed impurities. We also calculate the average staggered magnetic susceptibility induced in the system by such defects.  相似文献   

3.
We revisit the coordinate coherent states approach through two different quantization procedures in the quantum field theory on the noncommutative Minkowski plane. The first procedure, which is based on the normal commutation relation between an annihilation and creation operators, deduces that a point mass can be described by a Gaussian function instead of the usual Dirac delta function. However, we argue this specific quantization by adopting the canonical one (based on the canonical commutation relation between a field and its conjugate momentum) and show that a point mass should still be described by the Dirac delta function, which implies that the concept of point particles is still valid when we deal with the noncommutativity by following the coordinate coherent states approach. In order to investigate the dependence on quantization procedures, we apply the two quantization procedures to the Unruh effect and Hawking radiation and find that they give rise to significantly different results. Under the first quantization procedure, the Unruh temperature and Unruh spectrum are not deformed by noncommutativity, but the Hawking temperature is deformed by noncommutativity while the radiation specturm is untack. However, under the second quantization procedure, the Unruh temperature and Hawking temperature are untack but the both spectra are modified by an effective greybody (deformed) factor.  相似文献   

4.
In this paper, we have obtained exact analytical solutions for the bound states of a graphene Dirac electron in magnetic fields with various q-parameters under an electrostatic potential. In order to solve the time-independent Dirac–Weyl equation, the Nikoforov–Uvarov (NU) and Frobenius methods have been used. We have also investigated the thermodynamic properties by using the Hurwitz zeta function method for one of the states. Finally, some of the numerical results are also shown.  相似文献   

5.
Topological semimetals are newly discovered states of quantum matter, which have extended the concept of topological states from insulators to metals and attracted great research interest in recent years. In general, there are three kinds of topological semimetals, namely Dirac semimetals, Weyl semimetals, and nodal line semimetals. Nodal line semimetals can be considered as precursor states for other topological states. For example, starting from such nodal line states, the nodal line structure might evolve into Weyl points, convert into Dirac points, or become a topological insulator by introducing the spin–orbit coupling (SOC) or mass term. In this review paper, we introduce theoretical materials that show the nodal line semimetal state, including the all-carbon Mackay–Terrones crystal (MTC), anti-perovskite Cu3PdN, pressed black phosphorus, and the CaP3 family of materials, and we present the design principles for obtaining such novel states of matter.  相似文献   

6.
We report the amplitude scaling behavior of Frenkel exciton chains with nearest-neighbor correlated off-diagonal random interactions. The band center spectrum and its localization properties are investigated through the integrated density of states and the inverse localization length. The correlated random interactions are produced through a binary sequence similar to the interactions in spin glass chains. We produced sets of data with different interaction strength and “wrong” sign concentrations that collapsed after scaling to the predictions of a theory developed earlier for Dirac fermions with random-varying mass. We found good agreement as the energy approaches the band center for a wide range of concentrations. We have also established the concentration dependence of the lowest order expansion coefficient of the scaling amplitudes for the correlated case. The correlation causes unusual behavior of the spectra, i.e., deviations from the Dyson-type singularity.  相似文献   

7.
讨论了建立在相对论平均场基态的相对论无规位相近似研究中的一致性问题. 研究表明考虑费米海和Dirac海的粒子 空穴激发对核的同位旋标量巨共振的能量有很大的影响. The fully consistent relativistic random phase approximation (RRPA) built on the relativist mean field (RMF) ground state is presented. The fully consistent RRPA requires that the nuclear RMF wave function and the RRPA renormalization are calculated in a same effective Lagrangian. A theoretically complete treatment of the RRPA at the mean field level with no sea approximation must include not only the usual particle hole states, but also the pairs formed from the occupied Fermi states and Dirac states. Effects of inclusion of Dirac sea states in various multipole excitations are investigated. Considerable effects on the isoscalar giant multipole resonances are observed.  相似文献   

8.
The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energyweighted sum rule m-1 and the centroid energy of the ISGMR in ^120Sn and ^208Pb are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.  相似文献   

9.
I. Mazilu  G. Zamora  J. Gonzalez 《Physica A》2010,389(3):251-427
In this paper, we use random walk theory to describe the length dynamics of microtubules, one of the principal components of the cytoskeleton. We present a simple two-state model (growing and shrinking) of microtubule length evolution that incorporates a variable rate of switching between the states. Using the generating function technique, we calculate the mean length of microtubule, its variance and diffusion coefficient. We also report analytical and computer simulation results for the mean number of positive monomers in microtubule, and find good qualitative agreement with experimental data.  相似文献   

10.
We propose a lattice model for Dirac fermions which allows us to break the degeneracy of the node structure. In the presence of a random gap we analyze the scaling behavior of the localization length as a function of the system width within a numerical transfer-matrix approach. Depending on the strength of the randomness, there are different scaling regimes for weak, intermediate and strong disorder. These regimes are separated by transitions that are characterized by one-parameter scaling.  相似文献   

11.
Quantum fields are well known to violate the weak energy condition of general relativity: the renormalised energy density at any given point is unbounded from below as a function of the quantum state. By contrast, for the scalar and electromagnetic fields it has been shown that weighted averages of the energy density along timelike curves satisfy “quantum weak energy inequalities” (QWEIs) which constitute lower bounds on these quantities. Previously, Dirac QWEIs have been obtained only for massless fields in two-dimensional spacetimes. In this paper we establish QWEIs for the Dirac and Majorana fields of mass m≥ 0 on general four-dimensional globally hyperbolic spacetimes, averaging along arbitrary smooth timelike curves with respect to any of a large class of smooth compactly supported positive weights. Our proof makes essential use of the microlocal characterisation of the class of Hadamard states, for which the energy density may be defined by point-splitting. Received: 21 May 2001 / Accepted: 23 August 2001  相似文献   

12.
In this paper, we explore the size- and mass-dependent energy spectra and the electronic correlation of two- and three-electron graphene magnetic quantum dots. It is found that only the magnetic dots with large size can well confine the electrons. For large graphene magnetic dots with massless (ultra-relativity) electrons, the energy level structures of two Dirac electrons and even the ground state spin and angular momentum of three electrons are quite different from those of the usual semiconductor quantum dots. Also we reveal that such differences are not due to the magnetic confinement but originate from the character of the Coulomb interaction of two-component electronic wavefunctions in graphene. We reveal that the increase of the mass leads to both the crossover of the energy spectrum structures from the ultra-relativity to non-relativity ones and the increasing of the crystallization. The results are helpful for the understanding of the mass and size effects and may be useful in controlling the few-electron states in graphene-based nanodevices.  相似文献   

13.
《Nuclear Physics B》1999,556(3):545-562
A system of Dirac fermions with random-varying mass is studied in detail. We reformulate the system by transfer-matrix formalism. Eigenvalues and wave functions are obtained numerically for various configurations of random telegraphic mass m(x). Localized and extended states are identified. For quasi-periodic m(x), low-energy wave functions are also quasi-periodic and extended, though we are not imposing the periodic boundary condition on wave function. On increasing the randomness of the varying mass, states lose periodicity and most of them tend to localize. At the band centre or the low-energy limit, there exist extended states which have more than one peak spatially separate with each other comparatively large distance. Numerical calculations of the density of states and ensemble averaged Green's functions are explicitly given. They are in good agreement with analytical calculations by using the supersymmetric methods and exact form of the zero-energy wave functions.  相似文献   

14.
Dirac semimetals are materials in which the conduction and the valence bands have robust crossing points protected by topology or symmetry. Recently, a new type of Dirac semimetals, so called the Dirac line-node semimetals(DLNSs), have attracted a lot of attention, as they host robust Dirac points along the one-dimensional(1D) lines in the Brillouin zone(BZ).In this work, using angle-resolved photoemission spectroscopy(ARPES) and first-principles calculations, we systematically investigated the electronic structures of non-symmorphic ZrSiS crystal where we clearly distinguished the surface states from the bulk states. The photon-energy-dependent measurements further prove the existence of Dirac line node along the X-R direction. Remarkably, by in situ surface potassium doping, we clearly observed the different evolutions of the bulk and surface electronic states while proving the robustness of the Dirac line node. Our studies not only reveal the complete electronic structures of ZrSiS, but also demonstrate the method manipulating the electronic structure of the compound.  相似文献   

15.
赵斌 《物理学报》2016,65(5):52401-052401
本文在空间格点上利用虚时间步长方法求解了球形Dirac方程, 着重研究了出现的假态问题. 利用三点数值导数公式离散方程中一阶导数项, 可以证明对于量子数为 κ 和 -κ的单粒子能级能量是完全相同的, 其中一个为物理解, 另一个为假态. 通过在径向Dirac方程中引入Wilson 项, 可以解决假态问题, 得到全部物理解. 文章以 Woods-Saxon 势为例, 考虑 Wilson 项后, 得到与打靶法一致的结果.  相似文献   

16.
We consider the one-dimensional Dirac equation with the Woods–Saxon potential in the Framework of position dependent mass and pseudoscalar interaction. By imposing appropriate constraints on the mass function and the pseudoscalar term new exact solvable models are obtained. A detailed study of the scattering and bound-states problems for these models is presented. Meanwhile, we work out the exact expressions for the transmission and reflection probabilities of scattered states and obtain the exact equation for the energy eigenvalues associated to bound states. In particular, transmission resonance at zero-momentum is observed for supercritical states.  相似文献   

17.
In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification.

All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1?φ?1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate.

In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1?φ?1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4?φ?1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1?φ?1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data, thereby rendering this approach promising for application in LES.  相似文献   

18.
Numerous exotic properties have been discovered in Dirac Semimetals(DSMs) and Weyl Semimetals(WSMs). In a given DSM/WSM, the Dirac/Weyl nodes usually coexist with other bulk states, making their respective contribution elusive. In this work, we distinguish the role of bulk states from the tilted Dirac nodes on the transport properties in DSMs. Specifically, we applied pressure to a type-II DSM material, PtTe2, and studied its pressure modified electronic and lattice structure systematically by using in situ transport measurements and X-ray diffraction(XRD). A pressure-induced transition at about 20 GPa is revealed in the transport properties, while the layered lattice structure is robust against pressure as illustrated in XRD measurement results.Density functional theory(DFT) calculations suggest that this is originated from the Lifshitz transition in the bulk states. Our findings provide evidence to identify the bulk states' influence on transport from the topologically-protected DSM states in the DSM material.  相似文献   

19.
Motivated by the Super-Kamiokande atmospheric neutrino data, we discuss possible textures for Majorana and Dirac neutrino masses within the see-saw framework. There are two main purposes of this paper: first, to gain intuition into this area from a purely phenomenological analysis, and second, to explore to what extent it may be realized in a specific model. We comment initially on the simplified two-generation case, emphasizing that large mixing is not incompatible with a large hierarchy of mass eigenvalues. We also emphasize that renormalization-group effects may amplify neutrino mixing, and we present semi-analytic expressions for estimating this amplification. Several examples are then given of three-family neutrino mass textures, which may also accommodate the persistent solar neutrino deficit, with different assumptions for the neutrino Dirac mass matrices. We comment on a few features of neutrino mass textures arising in models with a U(1) flavour symmetry. Finally, we discuss the possible pattern of neutrino masses in a “realistic” flipped SU(5) model derived from string theory, illustrating how a desirable pattern of mixing may emerge. Both small- or large-angle MSW solutions are possible, while a hierarchy of neutrino masses appears more natural than near-degeneracy. This model contains some unanticipated features that may be relevant in other models also: The neutrino Dirac matrices may not be related closely to the quark mass matrices, and the heavy Majorana states may include extra gauge-singlet fields. Received: 6 November 1998 / Published online: 18 June 1999  相似文献   

20.
A disordered photonic crystal with spectral degeneracies in the form of Dirac nodes is considered. Disorder can create a random gap at the Dirac nodes, which leads to the formation of random edge modes. We study the distribution of these edge modes and find from symmetry considerations that the discrete anisotropy of the photonic crystal is spontaneously broken for the propagation of photons from a local photon source. This effect can be understood as the spontaneous creation of a ray mode or as the creation of a one‐dimensional waveguide in a two‐dimensional photonic crystal through strong random scattering. The phenomenon must be distinguished from Anderson localization of photons in a single band crystal and can be considered as angular localization, since it creates geometric states rather than confining the photons to an area of the size of the localization length. The propagation of the photon intensity is described by a Fokker‐Planck equation, whose drift term is determined by the spectrum of the photonic crystal near the Dirac node.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号