首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
陈刚  高尚鹏 《中国物理 B》2012,21(10):107101-107101
The structures of the heptazine-based graphitic C3N4 and the S-doped graphitic C3N4 are investigated by using the density functional theory with a semi-empirical dispersion correction for the weak long-range interaction between layers.The corrugated structure is found to be energetically favorable for both the pure and the S-doped graphitic C3N4.The S doptant is prone to substitute the N atom bonded with only two nearest C atoms.The band structure calculation reveals that this kind of S doping causes a favorable red shift of the light absorption threshold and can improve the electroconductibility and the photocatalytic activity of the graphitic C3N4.  相似文献   

2.
Ternary yttrium chromium sulfide,Y2CrS4,prepared by the solid-state reaction of Y2S3,Cr,and S,was found to exhibit an antiferromagnetic transition at about 64 K.The X-ray diffraction pattern at 300 K was refined with space group Pca2 1,and the structure parameters were determined to be a = 12.51 ,b = 7.53,and c = 12.49.We investigated the magnetotransport properties,and observed negative colossal magnetoresistance reaching up to 2.5 × 10 4 % in the semiconducting compound of Y2CrS4.  相似文献   

3.
According to the density functional theory we systematically study the electronic structure, the mechanical prop- erties and the intrinsic hardness of Si2N2O polymorphs using the first-principles method. The elastic constants of four Si2N2O structures are obtained using the stress-strain method. The mechanical moduli (bulk modulus, Young’s mod- ulus, and shear modulus) are evaluated using the Voigt-Reuss-Hill approach. It is found that the tetragonal Si2N2O exhibits a larger mechanical modulus than the other phases. Some empirical methods are used to calculate the Vickers hardnesses of the Si2N2O structures. We further estimate the Vickers hardnesses of the four Si2N2O crystal structures, suggesting all Si2N2O phases are not the superhard compounds. The results imply that the tetragonal Si2N2O is the hardest phase. The hardness of tetragonal Si2N2O is 31.52 GPa which is close to values of β-Si3N4 and γ-Si3N4.  相似文献   

4.
The crystallographic structure and magnetic properties of La(Fe 11.4 Al 1.6 )C 0.02 are studied by magnetic measure- ment and powder neutron diffraction with temperature and applied magnetic field. Rietveld refinement shows that La(Fe 11.4 Al 1.6 )C 0.02 crystallizes into the cubic NaZn 13 -type with two different Fe sites: Fe I (8b) and Fe II (96i), and that Al atoms preferentially occupy the Fe II site. A ferromagnetic state can be induced at a medial temperature of 39 K–139 K by an external magnetic field of 0.7 T, and a large lattice is correspondingly found at 100 K and 0.7 T. In all other conditions, La(Fe 11.4 Al 1.6 )C 0.02 has no net magnetization in the paramagnetic (T > T N = 182 K) or antifer- romagnetic states, and thus keeps its small lattice. Analysis of the Fe–Fe bond length indicates that the ferromagnetic state prefers longer Fe–Fe distances.  相似文献   

5.
Cu2ZnSnS4(CZTS) films are successfully prepared by co-electrodeposition in aqueous ionic solution and sulfurized in elemental sulfur vapor ambient at 400 C for 30 min using nitrogen as the protective gas.It is found that the CZTS film synthesized at Cu/(Zn+Sn)=0.71 has a kesterite structure,a bandgap of about 1.51 eV,and an absorption coefficient of the order of 10 4 cm 1.This indicates that the co-electrodeposition method with aqueous ionic solution is a viable process for the growth of CZTS films for application in photovoltaic devices.  相似文献   

6.
0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO 3(PZN-9%PT) single crystals with different orientations are investigated by using a spectroscopic ellipsometer,and the refractive indices and the extinction coefficients are obtained.The Sellmeier dispersion equations for the refractive indices are obtained by the least square fitting,which can be used to calculate the refractive indices in a low absorption wavelength range.Average Sellmeier oscillator parameters E o,λ o,S o,and E d are calculated by fitting with the single-term oscillator equation,which are related directly to the electronic energy band structure.The optical energy bandgaps are obtained from the absorption coefficient spectra.Our results show that the optical properties of [001] and [111] poled crystals are very similar,but quite different from those of the [011] poled crystal.  相似文献   

7.
La0.67Ca0.33MnO3 thin films are fabricated on fluorine-doped tin oxide conducting glass substrates by a pulsed laser deposition technique with SrTiO3 used as a buffer layer. The current-voltage characteristics of the heterojunctions exhibit an asymmetric and resistance switching behaviour. A homogeneous interface-type conduction mechanism is also reported using impedance spectroscopy. The spatial homogeneity of the charge carrier distribution leads to field- induced potential-barrier change at the Au-La0.67Ca0.33MnO3 interface and a concomitant resistance switching effect. The ratio of the high resistance state to the low resistance state is found to be as high as 1.3 × 10 4 % by simulating the AC electric field. This colossal resistance switching effect will greatly improve the signal-to-noise ratio in nonvolatile memory applications.  相似文献   

8.
The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most stable structure for the smallest formation energy.After N-doping,the charge density distribution significantly changes,and the acceptor impurity level is introduced above the valence band and intersects with the Fermi level.The impurity absorption edges appear to shift toward longer wavelengths with an increase in N-doping concentration.The complex refractive index shows metallic characteristics in the N-doped β-Ga2O3.  相似文献   

9.
Molecular structure, vibrational frequency and infrared intensity of UF 6 are investigated by using the revised Perdew-Burke-Enzerhof function with the triple-zeta polarized basis set. The calculation results are in good agreement with the experimental values and indicate the existence of a stable U2F6 molecule with a multiple bonded U2 unit. The calculation results also predict that the D3d symmetry of U2F6 is more stable than D3h . The optimized geometries, vibrational frequencies, and infrared intensities are also reported for U2F6 molecules in D3d symmetry. In addition, the isotopic shift of vibrational frequencies of the two molecules under isotopic substitution of uranium atom are also investigated with the same method. The U2F6 molecule is predicted to be better than UF6 for laser uranic isotope separation.  相似文献   

10.
The I–V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interfacial barriers are inves- tigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interfacial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interfacial barrier engineering, could be exploited for novel applications in nonvolatile memory devices.  相似文献   

11.
Tunable and switchable Ba 0.5 Sr 0.5 TiO 3 film bulk acoustic resonators(FBARs) based on SiO 2 /Mo Bragg reflectors are explored,which can withstand high temperature for the deposition of Ba x Sr 1 x TiO 3(BST) films at 800 C.The dc bias-dependent resonance may be attributed to the piezoelectricity of the BST film induced by an electrostrictive effect.The series resonant frequency is strongly dc bias-dependent and shifts downwards with dc bias increasing,while the parallel resonant frequency is only weakly dc bias-dependent and slightly shifts upwards at low dc bias(< 45 V) while downwards at higher dc bias.The calculated relative tunability of shifts at series resonance frequency is around 2.3% and the electromechanical coupling coefficient is up to approximately 8.09% at 60-V dc bias,which can be comparable to AlN FBARs.This suggests that a high-quality tunable BST FBAR device can be achieved through the use of molybdenum(Mo) as the high acoustic impedance layer in a Bragg reflector,which not only provides excellent acoustic isolation from the substrate,but also improves the crystallinity of BST films withstanding higher deposition temperature.  相似文献   

12.
(Fe50Co25B15Si10)80Cu20 ribbons are prepared by using the single-roller melt-spinning method.A dual-layer structure consisting of a(Fe,Co)-rich amorphous phase and a Cu-rich crystalline phase forms due to metastable liquid phase separation before solidification.The magnetic hysteresis loops of the as-quenched and annealed samples are measured at room temperature.It is indicated that the coercivity of the ribbon is almost zero in the as-quenched state.The crystallization leads to the increase of coercivity and decrease of saturation magnetization.  相似文献   

13.
The 0.6(Bi1-xLax)FeO 3-0.4SrTiO 3(x = 0,0.1) multiferroic ceramics are prepared by a modified Pechini method to study the effect of substitution of SrTiO3 and La in BiFeO3.The X-ray diffraction patterns confirm the single phase characteristics of all the compositions each with a rhombohedral structure.The magnetic properties of the ceramics are significantly improved by a solid solution with SrTiO3 and substitution of La.The values of the dielectric constant ε r and loss tangent tan δ of all the samples decrease with increasing frequency and become constant at room temperature.The La-doped 0.6BiFeO3-0.4SrTiO3 ceramics exhibit improved dielectric and ferroelectric properties,with higher dielectric constant enhanced remnant polarization(Pr) and lower leakage current at room temperature.Compared with a anti-ferromagnetic BiFeO3 compound,the 0.6(Bi0.9La0.1)FeO3-0.4SrTiO3 sample shows the optimal ferromagnetism with remnant magnetization M r ~ 0.135 emμ/g and ferroelectricity with Pr ~ 5.94 μC/cm 2 at room temperature.  相似文献   

14.
Yb:Sc2O3 transparent ceramics are fabricated by a conventional ceramic process and sintering in H2 atmosphere. The room-temperature spectroscopic properties are investigated, and the Raman spectrum shows an obvious vibration characteristic band centred at 415 cm 1 . There are three broad absorption bands around 891, 937, and 971 nm, respectively. The strongest emission peak is centred at 1.04 μm with a broad bandwidth (11 nm) and an emission cross-section of 1.8×10 20 cm 2 . The gain coefficient implies a possible laser ability in a range from 990 nm to 1425 nm. The energy-level structure shows that Yb:Sc 2 O 3 ceramics have large Stark splitting at the ground state level due to their strong crystal field. All the results show that Yb:Sc2O3 transparent ceramics are a promising material for short pulse lasers.  相似文献   

15.
Materials with the formula Yb 2-xAlxMo3O12(x =0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.5, and 1.8) were synthesized and their structures, phase transitions, and hygroscopicity investigated using X-ray powder diffrac- tion, Raman spectroscopy, and thermal analysis. It is shown that Yb2-xAlxMo3O12 solid solutions crystallize in a single monoclinic phase for 1.7 ≤ x ≤ 2.0 and in a single orthorhombic phase for 0.0 ≤ x ≤ 0.4, and exhibit the characteristics of both monoclinic and orthorhombic structures outside these compositional ranges. The monoclinic to orthorhombic phase transition temperature of Al2Mo3O12 can be reduced by partial substitution of Al 3+ by Yb3+, and the Yb2-x AlxMo3O12 (0.0 < x ≤ 2.0) materials are hydrated at room temperature and contain two kinds of water species. One of these interacts strongly with and hinders the motions of the polyhedra, while the other does not. The partial substitution of Al3+ for Yb3+ in Yb2Mo3O12 decreases its hygroscopicity, and the linear thermal expansion co- efficients after complete removal of water species are measured to be 9.1×10 6 /K, 5.5×10 6 /K, 5.74×10 6 /K, and 9.5 × 10 6 /K for Yb1.8 Al0.2 (MoO4)3 , Yb1.6Al0.4 (MoO4 )3, Yb0.4 Al1.6 (MoO4)3 , and Yb 0.2Al1.8 (MoO4)3 , respectively.  相似文献   

16.
A simplified structure of birefringent chalcogenide As 2 Se 3 photonic crystal fiber(PCF) is designed.Properties of birefringence,polarization extinction ratio,chromatic dispersion,nonlinear coefficient,and transmission are studied by using the multipole method,the finite-difference beam propagation method,and the adaptive split-step Fourier method.Considering that the zero dispersion wavelength of our proposed fiber is about 4 μm,we have analysed the mechanism of spectral broadening in PCFs with different pitches in detail,with femtosecond pulses at a wavelength of 4 μm as the pump pulses.Especially,mid-infrared broadband polarized supercontinuums are obtained in a 3-cm PCF with an optimal pitch of 2 μm.Their spectral width at 20 dB reaches up to 12 μm.In the birefringent PCF,we find that the supercontinuum generation changes with the pump alignment angle.Research results show that no coupling between eigenpolarization modes are observed at the maximum average power(i.e.,37 mW),which indicates that the polarization state is well maintained.  相似文献   

17.
In the present work,we adopt the ccsd/6-31g(d) method to optimize the ground state structure and calculate the vibrational frequency of the Si2N molecule.The calculated frequencies accord satisfactorily with the experimental values,which helps confirm the ground state structure of the molecule.In order to find how the external electric field affects the Si2N molecule,we use the density functional method B3P86/6-31g(d) to optimize the ground state structure and the time-dependent density functional theory TDDFT/6-31g(d) to study the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule under different external electric fields.It is found that the absorption spectra,the excitation energies,the oscillator strengths,and the dipole moments of the Si2N molecule are affected by the external electric field.One of the valuable results is that the absorption spectra of the yellow and the blue-violet light of the Si2N molecule each have a red shift under the electric field.The luminescence mechanism in the visible light region of the Si2N molecule is also investigated and compared with the experimental data.  相似文献   

18.
High-temperature thermoelectric transport property measurements have been performed on the highly c-axis oriented Bi2Sr2Co2Oy thin films prepared by pulsed laser deposition on LaAlO3(001).Both the electric resistivity ρ and the seebeck coefficient S of the film exhibit an increasing trend with the temperature from 300 K-1000 K and reach up to 4.8 m·Ω· cm and 202 μV/K at 980 K,resulting in a power factor of 0.85 mW/mK which are comparable to those of the single crystalline samples.A small polaron hopping conduction can be responsible for the conduction mechanism of the film at high temperature.The results demonstrate that the Bi2Sr2Co2Oy thin film has potential application in high temperature thin film thermoelectric devices.  相似文献   

19.
A Raman frequency upshift in the nc-Si phonon mode is observed at room temperature, which is attributed to a strong compressive stress in the Si nanocrystals. The 10-period amorphous-Si(3 nm)/amorphous-SiO2 (3 nm) layers are deposited by high-vacuum radio-frequency magnetron sputtering on quartz and sapphire substrates at different temperatures. The samples are then annealed in N2 atmosphere at 1100°C for 1 h for Si crystallization. It is demonstrated that the presence of a supporting substrate at the high growth temperature can induce different types of stresses in the Si nanocrystal layers. The strain is attributed to the difference in the thermal expansion coefficient between the substrate and the Si/SiO2 SL film. Such a substrate-induced stress indicates a new method for tuning the optical and electronic properties of Si nanocrystals for strained engineering.  相似文献   

20.
Structural and lattice dynamical properties of ReB2,RuB2,and OsB2 in the ReB2 structure are studied in the framework of density functional theory within the generalized gradient approximation.The present results show that these compounds are dynamically stable for the considered structure.The temperature-dependent behaviors of thermodynamical properties such as internal energy,free energy,entropy,and heat capacity are also presented.The obtained results are in good agreement with the available experimental and theoretical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号