首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>The quasi-classical trajectory(QCT) method is used to study the H+HS reaction on a newly built potential energy surface(PES) of the triplet state of H2S(3A″) in a collision energy range of 0-60 kcal/mol.Both scalar properties, such as the reaction probability and the integral cross section(ICS),and the vector properties,such as the angular distribution between the relative velocity vector of the reactant and that of the product,etc.,are investigated using the QCT method.It is found that the ICSs obtained by the QCT method and the quantum mechanical(QM) method accord well with each other.In addition,the distribution for the product vibrational states is cold,while that for the product rotational states is hot for both reaction channels in the whole energy range studied here.  相似文献   

2.
岳现房 《中国物理 B》2012,21(7):73401-073401
Stereodynamics for the reaction H+LiF(v=0, j=0) → HF+Li and its isotopic variants on the ground-state (1 2 A′) potential energy surface (PES) are studied by employing the quasi-classical trajectory (QCT) method. At a collision energy of 1.0 eV, product rotational angular momentum distributions P (θr), P (φr), and P (θr ,φr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j′ is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS 00 distribution shows a preferential forward scattering for the product angular distribution in each of the three isotopic reactions, which indicates that the title collision reaction is a direct reaction mechanism. The isotope effect on the stereodynamics is revealed and discussed in detail.  相似文献   

3.
In this paper, the stereodynamics of Li + DF → Li F + D reaction is investigated by the quasi-classical trajectory(QCT)method on the ^2A' potential energy surface(PES) at a relatively low collision energy of 8.76 kcal/mol. The scalar properties of the title reaction such as reaction probability and cross section are studied with vibrational quantum number of v = 1–6. The product angular distributions P(θr) and P(φr) are presented in the same vibrational level range. Moreover, two polarization-dependent generalized differential cross sections(PDDCSs), i.e., the PDDCS00 and PDDCS22+are calculated as well. These stereodynamical results demonstrate sensitive behaviors to the vibrational quantum numbers.  相似文献   

4.
The quasi-classical trajectory(QCT) is calculated to study the stereodynamics properties of the title reaction H(2S)+NH(X3∑-) →N(4S)+H2 on the ground state 4A' potential energy surface(PES) constructed by Zhai and Han [2011 J.Chem.Phys.135 104314].The calculated QCT reaction probabilities and cross sections are in good agreement with the previous theoretical results.The effects of the collision energy on the k-k' distribution and the product polarization of H2 are studied in detail.It is found that the scattering direction of the product is strongly dependent on the collision energy.With the increase in the collision energy,the scattering directions of the products change from backward scattering to forward scattering.The distribution of P(θr) is strongly dependent on the collision energy below the lower collision energy(about 11.53 kcal/mol).In addition,the P(φr) distribution dramatically changes as the collision energy increases.The calculated QCT results indicate that the collision energy plays an important role in determining the stereodynamics of the title reaction.  相似文献   

5.
沙广燕  袁久闯  孟长功  陈茂笃 《中国物理 B》2014,23(1):18202-018202
A theoretical study of the stereodynamics for reaction O(1D) + CH4→OH + CH3 has been carried out using the quasiclassical trajectory method(QCT) on a potential energy surface structured by Gonzalez et al. The integral cross sections(ICSs), differential cross sections(DCSs) and product rotational angular momentum polarization have been calculated. With the collision energy increasing, the ICS decreases. There is no threshold energy, because no barrier is found on the minimum energy path. The DCS results show that the backward and forward scatterings exist at the same time. With the collision energy increasing, the dominant rotation of the product changes from the right-handed direction to the left-handed direction in planes parallel to the scattering plane. In the isotopic effect study, the decrease of the mass factor weakens the polarization degree of the rotational angular momentum vectors of the products.  相似文献   

6.
The quantum state-to-state calculations of the D + ND→N + D_2 reaction are performed on a potential energy surface of 4 A' state. The state-resolved integral and differential cross sections and product state distributions are calculated and discussed. It is found that the rotational distribution, rather than the vibrational distribution, of the product has an obvious inversion. Due to the fact that it is a small-impact-parameter collision, its product D_2 is mainly dominated by rebound mechanism, which can lead to backward scattering at low collision energy. As the collision energy increases, the forward scattering and sideward scattering begin to appear. In addition, the backward collision is also found to happen at high collision energy, through which we can know that both the rebound mechanism and stripping mechanism exist at high collision energy.  相似文献   

7.
The stereodynamic properties of the F + HO (v, j) reaction are explored by quasi-classical trajectory (QCT) calculations performed on the 1At and 3At potential energy surfaces (PESs). Based on the polarization-dependent differential cross sections (PDDCSs) and the angular distributions of the product angular momentum with the reactant at different values of initial v or j, the results show that the product scattering and product polarization have strong links with initial vibrationalrotational numbers of v and j. The significant manifestation of the normal DCSs is that the forward scattering gradually becomes predominant with the initial vibrational excitation increasing, and the scattering angle of the HF product taking place on the 3At potential energy surface is found to be more sensitive to the initial value of v. The product orientation and alignment are strongly dependent on the initial rovibrational excitation effect. With enhancement in the initial rovibrational excitation effect, there is an overall decrease in the product orientation as well as in the product alignment either perpendicular to the reagent relative velocity vector k or along the direction of the y axis, for which the initial rotational excitation effect is much more noticeable than the vibrational excitation effect. Moreover, the initial rovibrational excitation effect on the product polarization is more pronounced for the 3At potential energy surface than for the 1At potential energy surface.  相似文献   

8.
魏强 《中国物理 B》2014,23(2):23401-023401
The stereodynamics and reaction mechanism of the H′(^2S) + NH (X^3∑^-) → N(^4S) + H2 reaction are thoroughly studied at collision energies in the 0.1 eV-1.0 eV range using the quasiclassical trajectory (QCT) on the ground 4A″ potential energy surface (PES). The distributions of vector correlations between products and reagents P(φr), P(φr) and P(φr,φr) are presented and discussed. The results indicate that product rotational angular momentum j′ is not only aligned, but also oriented along the direction perpendicular to the scattering plane; further, the product H2 presents different rotational polarization behaviors for different collision energies. Furthermore, four polarization-dependent differential cross sections (PDDCSs) of the product He are also calculated at different collision energies. The reaction mechanism is analyzed based on the stereodynamics properties. It is found that the abstraction mechanism is appropriate for the title reaction.  相似文献   

9.
The best optimal initial reactant state and collision energy for observing the stereodynamical vector properties of the title reaction in the ground electronic state X2A’ potential energy surface (PES)[Zanchet et al. 2006 J. Phys. Chem. A 110 12017] are theoretically predicted using the quasi-classical trajectory (QCT) method for the first time. The calculated results reveal that the smallest value of the rotational quantum number j, larger vibrational quantum number v, and the lower strength of collision energy should be selected for offering the most obvious picture about the stereodynamical vector properties. Polarization-dependent differential cross sections and the angular momentum alignment distribution, P(θr) and P(Φr) in the center-of-mass frame, are obtained to gain an insight into the alignment and orientation of the product molecules. The rotational angular momentum vector j’ of CO is aligned to be perpendicular to reagent relative velocity k. The product polarizations align along the y axis, pointing to the positive direction of the y axis. A new method is developed to investigate massive reactions with various initial states and to further study the vector properties of the fundamental reactions in detail.  相似文献   

10.
The vector correlations in the reaction F+H2 (v =0-3, j =0-3)→ HF(v', j')+H are investigated using the quasi- classical trajectory method on the Stark-Werner potential energy surface at a collision energy of 1.0eV. The potential distribution P(θr) to angles between k and j', the distribution P(Фr) to dihedral angles, denoting k - k' - j' correlation and the polarization-dependent generalized differential cross sections, are calculated. The effect of reagent vibrational and rotational excitation on the F+H2 reaction is discussed in detail The results suggest that the different vibrational and rotational quantum states of H2 have different influences on the product polarization.  相似文献   

11.
The quasiclassical trajectory (QCT) method is used to study stereodynamic information about the reaction O ( 1 D) + H 2 →OH + H on the DK (Dobbyn and Knowles) (1 1 A' ) ab initio potential energy surface (PES). A wide scale of collision energy (E c ) from 0.05 eV to 0.5 eV is considered in the dynamic calculations. To reveal the rovibrational excitation effect, calculations at a collision energy of 0.52 eV are carried out for the v = 0 ~ 5, j = 0 and v = 0, j = 0 ~ 15 initial states. The two popularly used polarization-dependent differential cross sections (PDDCSs), dσ 00 /dω t (0, 0) and dσ 20 /dω t (2, 0), and two angular distributions, P(θ r ) and P( r ) are calculated to obtain an insight into the alignment and the orientation of the product molecules. From the calculations, we can obtain that the alignment of the OH product is weaker at high collision energy and becomes stronger with the increase of initial vibrational level, and it is almost insensitive to the initially rotational excitation. Influences of the mass values of isotopes (HD, D 2 ) on the stereodynamics are also shown and discussed. Comparisons between available theoretical results and experimental results are made and discussed.  相似文献   

12.
<正>The quasi-classical trajectory(QCT) method is used to calculate the stereo-dynamics of the exchange reaction H_a+LiH_b→LiH_a+H_b and its isotopic variants based on an accurate potential energy surface reported by Prudente et al.[Prudente F V,Marques J M C and Maniero A M 2009 Chem.Phys.Lett.474 18].The reactive probability of the title reaction is computed.The vector correlations and four polarization-dependent generalized differential cross sections(PDDCSs) at different collision energies are presented.The influences of the collision energy and the reagent rotation on the product polarization are studied in the present work.The results indicate that the product rotational angular momentum j’ is not only aligned,but also oriented along the direction perpendicular to the scattering plane. The product polarization distributions of the title reaction and its isotopic variants exhibit distinct differences which may arise from different mass combinations.  相似文献   

13.
李红  郑斌  尹吉庆  孟庆田 《中国物理 B》2011,20(12):123401-123401
The vector properties of reaction O(1D)+HBr→ OH+Br on the potential energy surface (PES) of X1A′ ground singlet state are studied by using the quasi-classical trajectory (QCT) theory. The polarization-dependent differential cross sections (PDDCSs), the average rotational alignment factor 2(j′· k)>, as well as the distributions reflecting vector correlations are also computed. The analysis of the results shows that the alignment and the orientation distribution of the rotation angular momentum vector of product molecule OH is influenced by both the effect of heavy-light-heavy (HLH) type mass combination and the deep well of PES.  相似文献   

14.
Using the quasi-classical trajectory method, the product rotational polarization of the ion-molecule reaction He^+D2^+ has been calculated at different collision energies on the PALMIERI potential energy surface [Palmieri et al. Mol. Phys. 98 (2000) 1835]. The distribution angle between k and j′, P(Or), the distribution of the dihedral angle P(Фr), and the angular distribution of product rotational vectors in the form of polar plots in θr and Фr are calculated. In addition, four polarization-dependent differential cross sections are also presented in the center-of-mass frame, respectively. The results indicate that the rotational polarization of the product HeD^+ presents different characters for different collision energies. These discrepancies may be ascribed to the different collision energies and constructions of the potential energy surface.  相似文献   

15.
The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duration, laser intensity and wavelength are studied respectively. The calculated results indicate that the irradiation of a femtosecond laser of longer wavelength on hydrogen atomic clusters may be a simple, economical way to produce highly kinetic hydrogen ions. The phenomenon suggests that the irradiation of femtosecond laser of longer wavelength on deuterium atomic clusters may be easier than that of shorter wavelength to drive nuclear fusion reactions. The product of the laser intensity and the squared laser wavelength needed to make proton energy saturated as a function of the squared cluster radius is also investigated. The proton energy distribution calculated is also shown and compared with the experimental data. Our results are in agreement with the experimental results fairly well.  相似文献   

16.
The formulae of photon angular distribution and polarization degree for radiative recombination are presented to include the contribution of multipoles and their correlations. A fully relativistic code is then developed to calculate the photon angular distribution and polarization. The calculated polarization degree and differential cross-sections agree well with that of Scofild's results within 10%. The effects of multipoles on polarization and angular distribution are investigated. The polarization and the angular distribution become asymmetric when the multipoles are accounted as the electron energy increases.  相似文献   

17.
A new London-Eyring-Polanyi-Sato potential energy surface is employed in this work to study the stereo properties of the O(3P)+CH4 →H+CH3O reaction in its rovibrationally ground state using the quasiclassical trajectory method(QCT).Our calculations are performed at a range of collision energies,Ec=1.5eV~3.5eV,and the excitation function obtained by the QCT method accords well with the experimental data.The product rotational polarization is calculated,and the product shows a strong rotational polarization in the centre-of-mass coordinate system.The orientation of the product rotational angular momenta is sensitive to the increase in collision energy,and the alignment of the product rotational angular momenta shows some of the properties of the heavy heavy-light mass combination reactions.In the isotopic substituted reaction study,when the H atoms in methane are replaced by D atoms,the rotational polarization is obviously reduced.The polarization-dependent differential cross section is also studied by this QCT calculation to provide detailed information about the rotational alignment and orientation of the product.  相似文献   

18.
刘世莉  石英 《中国物理 B》2011,20(1):13404-013404
This paper employs the quasi-classical trajectory calculations to study the influence of collision energy on the title reaction on the potential energy surface of the ground 3A' triplet state developed by Rogers et al. (J. Phys. Chem. A 2000 104 2308). It calculates the product angular distribution of P(θr), P(φr) and P(θr, φr) which reflects vector correlation. The distribution P(θr) shows that product rotational angular momentum vectors j' of the products are strongly aligned along the relative velocity direction k. The distribution of P(φr) implies a preference for left-handed product rotation in planes parallel to the scattering plane. Four different polarisation-dependent cross-sections are also presented in the centre-of-mass frame. Results indicate that OH is sensitively affected by collision energies of H2.  相似文献   

19.
朱通  扈国栋  陈建中  刘新国  张庆刚 《中国物理 B》2010,19(8):83402-083402
<正>The vector correlation between products and reagents for reaction O(~3P)+HCl→OH+Cl is studied using a quasiclassical trajectory(QCT) method on the benchmark potential energy surface of the ground ~3A" state[Ramachandran and Peterson,J.Chem.Phys.119(2003)9550].The generalised differential cross section(2π/σ)(dσ_(00)/dω_t) is presented in the centre of mass frame.The distribution of dihedral angles,P(φr),and the distribution of angles between k and j', P(θ_r),are calculated.The influence of the collision energy and the influence of the reagent rotation and vibration on the product polarization are studied in the present work.The calculated results indicate that the rotational polarization of the product molecule is almost independent of collision energy but sensitive to the reagent rotation and vibration.  相似文献   

20.
The best optimal initial reactant state and collision energy for observing the stereodynamical vector properties of the title reaction in the ground electronic state X2A potential energy surface(PES) [Zanchet et al. 2006 J. Phys. Chem. A 110 12017] are theoretically predicted using the quasi-classical trajectory(QCT) method for the first time. The calculated results reveal that the smallest value of the rotational quantum number j, larger vibrational quantum number v, and the lower strength of collision energy should be selected for offering the most obvious picture about the stereodynamical vector properties. Polarization-dependent differential cross sections and the angular momentum alignment distribution, P(θr) and P(Φr) in the center-of-mass frame, are obtained to gain an insight into the alignment and orientation of the product molecules. The rotational angular momentum vector j of CO is aligned to be perpendicular to reagent relative velocity k. The product polarizations align along the y axis, pointing to the positive direction of the y axis. A new method is developed to investigate massive reactions with various initial states and to further study the vector properties of the fundamental reactions in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号