首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An analytical model based on an assumption of combined quasi-steady and transient behavior of the process is presented to exemplify the unsteady, sphero-symmetric single droplet combustion under microgravity. The model used in the present study includes an alternative approach of describing the droplet combustion as a process where the diffusion of fuel vapor residing inside the region between the droplet surface and the flame interface experiences quasi-steadiness while the diffusion of oxidizer inside the region between the flame interface and the ambient surrounding experiences unsteadiness. The modeling approach especially focuses on predicting; the variations of droplet and flame diameters with burning time, the effect of vaporization enthalpy on burning behavior, the average burning rates and the effect of change in ambient oxygen concentration on flame structure. The modeling results are compared with a wide range of experimental data available in the literature. It is shown that this simplified quasi-steady transient approach towards droplet combustion yields behavior similar to the classical droplet theory.  相似文献   

2.
The combustion of magnesium particles in water vapor is of interest for underwater propulsion and hydrogen production. In this work, the combustion process of a single magnesium particle in water vapor is studied both experimentally and theoretically. Combustion experiments are conducted in a combustor filled with motionless water vapor. Condensation of gas-phase magnesia on the particle surface is confirmed and gas-phase combustion flame characteristics are observed. With the help of an optical filter and a neutral optical attenuator, flame structures are captured and determined. Flame temperature profiles are measured by an infrared thermometer. Combustion residue is a porous oxide shell of disordered magnesia crystal, which may impose a certain influence on the diffusivity of gas phases. A simplified one-dimensional, spherically symmetric, quasi-steady combustion model is then developed. In this model, the condensation of gas-phase magnesia on the particle surface and its influence on the combustion process are included, and the Stefan problem on the particle surface is also taken into consideration. With the combustion model, the parameters of flame temperature, flame diameter, and the burning time of the particle are solved analytically under the experimental conditions. A reasonable agreement between the experimental and modeling results is demonstrated, and several features to improve the model are identified.  相似文献   

3.
The burning and sooting behaviors of isolated fuel droplets for ethanol and n-decane are examined in high concentration of the ambient carbon dioxide under microgravity. A quartz fiber with the diameter of 50 μm maintains the droplet in the center of the combustion chamber and the range in the initial droplet diameter is from 0.30 to 0.80 mm. The ambience consists of oxygen, nitrogen and carbon dioxide. The concentration of oxygen is 21% in volume, and that of carbon dioxide is varied from 0% to 60% in volume. Detail measurements of the projected image of the droplet are conducted by using a high speed video camera and the effective droplet diameter squared are calculated from the surface area of the rotating body of the projected object. From evolutions of the droplet diameter squared, the instantaneous burning rates are calculated. Time history of the instantaneous burning rate clearly represents the droplet combustion events, such as the initial thermal expansion, ignition and following combustion. The instantaneous burning rate for n-decane shows an increasing trend during combustion, while that for non-sooting ethanol remains almost constant or shows a decreasing trend. A slight stepwise increase in the instantaneous burning rate is observed for larger n-decane droplets in air, which may be attributed to soot accumulation. However, this behavior of the burning rate disappears in higher concentration of carbon dioxide. Direct observation of the droplet flame indicates suppression of soot production in higher concentration of carbon dioxide and the suppression is enhanced for smaller droplet.  相似文献   

4.
l.IntroductionMetalaluminumisusual1yaddedtosolidrocketpropellantstoincreasethrustandspecificimpu1se.Inaddition,a1uminumoxideparticlesproducedinhightemPeratureburningareacaninturnsuppresshighfrequencycombustioninstabilities.Fromthetheo-reticalcombustionmode1ofsolidproPellants['2j,oxiderandbinder,maincompositionofsolidproPellants,arefirstdecomPOsedandvaPOrizcdintheburningprocere,sothatthealuminumparticlesareexposedonthesurfaceofsolidproPCllants.SomeoftheexPOsedaluminumparticlesescaPerapedl…  相似文献   

5.
石油焦渣油浆燃烧特性的试验研究   总被引:1,自引:0,他引:1  
石油焦渣油浆是为电站燃油锅炉开发的一种新型代用燃料,本文对南京金陵石化所提供的渣油和石油焦所制成石油焦渣油浆的燃烧特性进行了试验研究。结果表明,浓度为40%的石油焦渣油浆可以成功地进行制备、加热、输送和燃烧,并具有较高的燃烧效率;石油焦渣油浆的浓度、油焦浆的加热温度、负荷和氧量对其燃烧效率有很大影响。  相似文献   

6.
Although 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) and Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are very similar molecularly and their burning rates as a function of pressure are nearly identical, it is well known that they differ significantly in temperature sensitivity, especially at low pressures. To understand these differences better, three simple models were applied to HMX and RDX combustion. Both the Denison–Baum–Williams and Li–Williams–Margolis models have previously been calibrated for use with RDX. However, the RDX calibration of the Ward–Son–Brewster model was developed in the present work. All three models were compared with relevant measured data including: burning rate, flame stand-off/thickness, combustion stability, and temperature sensitivity. It was shown that all models are capable of accurately determining the burning rate of HMX and RDX as a function of pressure at the baseline initial temperature, but only two of the models are capable of capturing the variation in temperature sensitivity for both HMX and RDX, and only one model can replicate all the other measured characteristics within experimental uncertainty. Analysis using this model suggests that the surface reaction of RDX is much less exothermic than HMX and that there is a shifting between the gas phase and surface reaction dominance with pressure for HMX. This explains why the temperature sensitivity for RDX is nearly flat for low pressures while the temperature sensitivity for HMX increases significantly as the pressure decreases. Importantly, these trends are achieved without adding significant model complexity or having parameters change with pressure or initial temperature.  相似文献   

7.
The influence of oxygen (O2) concentration and inert on the sooting and burning behavior of large ethanol droplets under microgravity conditions was investigated through measurements of burning rate, flame temperature, sootshell diameter, and soot volume fraction. The experiments were performed at the NASA Glenn Research Center (GRC) 2.2 s drop tower in Cleveland, OH. Argon (Ar), helium (He), and nitrogen (N2) were used as the inerts and the O2 concentration was varied between 21% and 50% mole fraction at 2.4 atm. The unique configuration of spherically symmetric droplet flames enables effective control of sooting over a wide range of residence time of fuel vapor transport, flame temperature, and regimes of sooting to investigate attendant influences on burning behavior of droplets. For all inert cases, soot volume fraction initially increased as a function of the O2 concentration. The highest soot volume fractions were measured for experiments in Ar environments and the lowest soot volume fractions were measured for the He environments. These differences were attributed to the changes in the residence time for fuel vapor transport and the flame temperature. For the He inert and N2 inert cases, the soot volume fraction began to decrease after reaching a maximum value. The competition between the influence of residence time, rate of pyrolysis reactions, and soot oxidation can lead to this interesting behavior in which the soot volume fraction varies non-monotonically with increase in O2 concentration. These experiments have developed new understanding of the burning and sooting behaviors of ethanol droplets under various O2 concentrations and inert substitutions.  相似文献   

8.
A numerical study of laminar diffusion flames established over a condensed fuel surface, inclined at several angular orientations in the range of –90°?θ?+90° with respect to the vertical axis, under atmospheric pressure and normal gravity environment, is presented. Methanol is employed as the fuel. A numerical model, which solves transient gas-phase, two-dimensional governing conservation equations, with a single-step global reaction for methanol–air oxidation and an optically thin radiation sub-model, has been employed in the present investigation. Numerical results have been validated against the experimental data from the present study. Thereafter, the model is used to investigate the influence of angular orientation of fuel surface on its quasi-steady burning characteristics. Results in terms of fuel mass burning rate, flame stand-off distances, temperature field, velocity profiles and oxygen contours have been presented and discussed in detail. It is observed that orientation angles in the range of –45°?θ? –30° (fuel surface facing upwards), yield the maximum mass burning rates. The flame anchoring location near the leading edge of the fuel surface, normal gradient of fuel vapor mass fraction at the surface and oxygen contours have been used to explore this unique behavior. Based on the numerical results, a theoretical correlation to predict the mass burning rate as a function of fuel surface orientation is also proposed. Furthermore, a discussion on the differences in the structure of laminar diffusion flame established over fuel surface as a function of its angular orientation is included.  相似文献   

9.
Experimental studies of the combustion of mixtures of micron-sized flaky aluminum powder with unthickened water in different conditions at atmospheric and high pressure in nitrogen and argon are performed. The density and composition of the mixture are varied. The regularities of the combustion have been established. A filtration wave of hot hydrogen ahead of the combustion front in samples with high porosity has been revealed. For the combustion under a nitrogen atmosphere, the pressure exponent in the burning rate law is close to 0.47 in a wide range of pressures. For the combustion under an argon atmosphere at pressures above 50 atm, the pressure exponent becomes zero or negative. Aluminum powder is demonstrated to be able to burn under conditions of a separated charge, where the fuel (aluminum) and oxidizer (water) are separated by a thin partition or brought in direct contact. The fast convective burning of aluminum-water mixtures in a semiclosed volume is discovered.  相似文献   

10.
11.
The major bottleneck for popularization and utilization of the conventional mechanical valve pulse combustors is the self-priming mode of gas supply. An aerodynamic valve (as against mechanical valve) self-excited pulse combustor of the Helmholtz-type with continuous supply of gas and air was designed and a mathematical model was established in this paper. The theoretical model employed well-stirred reactor model and a single step Arrhenius chemistry, and took those factors which might affect the combustion stability into account. The factors include the variation of the mass rate of the reactants affected by the pressure in the combustion chamber, the convective and radiation heat loss in the combustion chamber, and the heat transfer and wall friction in the tailpipe. The effect of wall temperature of combustion chamber, wall heat transfer coefficient, tailpipe length and friction coefficient on combustionstability were analyzed. The range of combustion oscillations can be predicted. It is theoretically and experimentally shown that combustion oscillations can be produced with a continuous supply of fuel and air without mechanical valves. The experimental data show qualitative agreement with predictions from the theoretical model. The theoretical model could be a tool for designing and optimizing the self-excited pulse combustor.  相似文献   

12.
天然气在不同初始温度和压力下的燃烧特性研究   总被引:1,自引:0,他引:1  
利用定容燃烧弹研究了不同初始温度和初始压力下的天然气燃烧特性,分析了初始温度、初始压力和当量比对其燃烧过程的影响.研究结果表明:随着初始温度的升高(300~450 K),天然气质量燃烧速率明显增加,燃烧持续期和火焰发展期显著缩短.随着初始压力的升高(0.1~0.75 MPa),天然气质量燃烧速率明显减慢,燃烧持续期和火焰发展期显著增长.且稀混合气和浓混合气条件下初始温度和初始压力的变化对燃烧持续期和火焰发展期的影响更明显.  相似文献   

13.
Jian-Xin Nie 《中国物理 B》2022,31(4):44703-044703
The combustion mechanism of aluminum particles in a detonation environment characterized by high temperature (in unit 103 K), high pressure (in unit GPa), and high-speed motion (in units km/s) was studied, and a combustion model of the aluminum particles in detonation environment was established. Based on this model, a combustion control equation for aluminum particles in detonation environment was obtained. It can be seen from the control equation that the burning time of aluminum particle is mainly affected by the particle size, system temperature, and diffusion coefficient. The calculation result shows that a higher system temperature, larger diffusion coefficient, and smaller particle size lead to a faster burn rate and shorter burning time for aluminum particles. After considering the particle size distribution characteristics of aluminum powder, the application of the combustion control equation was extended from single aluminum particles to nonuniform aluminum powder, and the calculated time corresponding to the peak burn rate of aluminum powder was in good agreement with the experimental electrical conductivity results. This equation can quantitatively describe the combustion behavior of aluminum powder in different detonation environments and provides technical means for quantitative calculation of the aluminum powder combustion process in detonation environment.  相似文献   

14.
A multicomponent vaporization model is integrated with detailed fuel chemistry and soot models for simulating biodiesel–diesel spray combustion. Biodiesel, a fuel mixture comprised of fatty-acid methyl esters, is an attractive alternative to diesel fuel for use in compression-ignition engines. Accurately modelling of the spray, vaporization, and combustion of the fuel mixture is critical to predicting engine performance using biodiesel. In this study, a discrete-component vaporization model was developed to simulate the vaporization of biodiesel drops. The model can predict differences in the vaporization rates of different fuel components. The model was validated by use of experimental data of the measured biodiesel drop size history and spray penetration data obtained from a constant-volume chamber. Gas phase chemical reactions were simulated using a detailed reaction mechanism that also includes PAH reactions leading to the production of soot precursors. A phenomenological multi-step soot model was utilized to predict soot emissions from biodiesel–diesel combustion. The soot model considered various steps of soot formation and destruction, such as soot inception, surface growth, coagulation, and PAH condensation, as well as oxidation by oxygen and hydroxyl-containing molecules. The overall numerical model was validated with experimental data on flame structure and soot distributions obtained from a constant-volume chamber. The model was also applied to predict combustion, soot and NOx emissions from a diesel engine using different biodiesel–diesel blends. The engine simulation results were further analysed to determine the soot emissions characteristics by use of biodiesel–diesel fuels.  相似文献   

15.
等离子体对含硼两相流扩散燃烧特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
张鹏  洪延姬  丁小雨  沈双晏  冯喜平 《物理学报》2015,64(20):205203-205203
为排除来流空气对含硼燃气的掺混效应, 研究等离子体对含硼富燃料推进剂在补燃室二次燃烧过程的影响, 建立了含硼两相流平行进气扩散燃烧物理模型. 利用高速摄影仪拍摄了含硼燃气在补燃室二次燃烧的火焰图像, 分析了该物理模型的扩散燃烧特性和硼颗粒的二次点火距离. 采用硼颗粒的King点火模型、有限速度/涡耗散模型、颗粒轨道模型和RNG k-ε模型以及等离子体模型, 模拟了一定条件下等离子体对含硼两相流扩散燃烧过程的影响. 结果表明, 依据含硼燃气二次燃烧图像得到的硼颗粒二次点火距离, 与数值模拟结果基本一致, 保证了该物理模型和计算方法的可靠性. 含硼两相流经过等离子体区域后, 硼颗粒在运动轨迹上颗粒温度明显增加, 颗粒直径明显减小, B2O3的质量分数分布区域明显扩增, 70%的硼颗粒在到达补燃室2/3尺寸前燃烧效率已达到100%, 硼颗粒充分燃烧释放出更多热量导致中心流线区域温度增加近1/2, 可见等离子体可以明显强化含硼两相流的燃烧过程, 提高硼颗粒的燃烧效率.  相似文献   

16.
The present study aims to clarify the effects of turbulence intensity and coal concentration on the spherical turbulent flame propagation of a pulverized coal particle cloud. A unique experimental apparatus was developed in which coal particles can be dispersed homogeneously in a turbulent flow field generated by two fans. Experiments on spherical turbulent flame propagation of pulverized coal particle clouds in a constant volume spherical chamber in various turbulence intensities and coal concentrations were conducted. A common bituminous coal was used in the present study. The flame propagation velocity was obtained from an analysis of flame propagation images taken using a high-speed camera. It was found that the flame propagation velocity increased with increasing flame radius. The flame propagation velocity increases as the turbulence intensity increases. Similar trends were observed in spherical flames using gaseous fuel. The coal concentration has a weak effect on the flame propagation velocity, which is unique to pulverized coal combustions in a turbulent field. These are the first reports of experimental results for the spherical turbulent flame propagation behavior of pulverized coal particle clouds. The results obtained in the present study are obviously different from those of previous pulverized coal combustion studies and any other results of gaseous fuel combustion research.  相似文献   

17.
杨晋朝  夏智勋  胡建新 《物理学报》2013,62(7):74701-074701
建立了一维非稳态球形镁颗粒群的着火燃烧模型, 数值模拟镁颗粒群的着火和燃烧过程, 研究表明, 颗粒群着火首先发生在颗粒群边界, 随后初始的燃烧火焰会分离为两个, 一个向颗粒群内部传播, 一个向外部传播, 最终内部火焰消失, 外部火焰维持并控制着整个颗粒群的燃烧; 内火焰向颗粒群内部传播过程中, 传播速度会逐渐加快, 且火焰温度值呈逐渐降低趋势. 分析了颗粒群内部参数和环境参数对镁颗粒群着火燃烧的影响. 随颗粒浓度的增大, 颗粒群着火时间略有增长, 但火焰传播速度更快, 燃烧稳定时火焰球尺寸也更大. 颗粒群初温越高, 则颗粒群着火时间越短, 火焰传播速度也会加快, 但燃烧稳定时火焰球尺寸基本不变. 环境温度对颗粒群着火燃烧的影响较复杂, 环境温度越高, 颗粒群着火时间越短, 但火焰传播速度却越慢, 燃烧稳定时火焰球尺寸变化很小. 颗粒粒径和辐射源温度对颗粒群着火燃烧的影响较显著, 颗粒粒径越小或辐射源温度越高, 则颗粒群着火时间越短, 火焰传播速度越快, 燃烧稳定时火焰球尺寸也越大. 数值模拟结果与文献中试验结果相一致. 关键词: 粉末燃料冲压发动机 镁着火燃烧 颗粒群  相似文献   

18.
应用经典热力学理论建立了溶液表面蒸汽压的计算模型,获得了氯化锂溶液的表面蒸汽压随温度及浓度的变化规律;建立了氯化锂溶液表面蒸汽压测量实验台,实验测量结果与理论模型完全符合,验证了本文结果的正确性.  相似文献   

19.
Cookstove operation comprises three basic processes, namely combustion of firewood, natural air draft due to the buoyancy induced by the temperature difference between the hearth and its surroundings, and heat transfer to the pot, stove body and surrounding atmosphere. Owing to the heterogenous and unsteady burning of solid fuel, there exist nonlinear and dynamic interrelationships among these process parameters. A steady-state analytical model of the cookstove operation is developed for its design improvement by splitting the hearth into three zones to study char combustion, volatile combustion and heat transfer to the pot bottom separately. It comprises a total of seven relations corresponding to a thorough analysis of the three basic processes. A novel method is proposed to model the combustion of wood to mimic the realities closely. Combustion space above the fuel bed is split into 1000 discrete parts to study the combustion of volatiles by considering a set of representative volatile gases. Model results are validated by comparing them with a set of water boiling tests carried on a traditional cookstove in the laboratory. It is found that the major thrust areas to improve the thermal performance are combustion of volatiles and the heat transfer to the pot. It is revealed that the existing design dimensions of the traditional cookstove are close to their optimal values. Addition of twisted-tape inserts in the hearth of the cookstove shows an improvement in the thermal performance due to increase in the heat transfer coefficient to the pot bottom and improved combustion of volatiles.  相似文献   

20.
A study of the combustion times for aluminum particles in the size range of 3–11 μm with oxygen, carbon dioxide, and water vapor oxidizers at high temperatures (>2400 K), high pressures (4–25 atm), and oxidizer composition (15–70% by volume in inert diluent) in a heterogeneous shock tube has generated a correlation valid in the transition regime. The deviation from diffusion limited behavior and burn times that could otherwise be accurately predicted by the widely accepted Beckstead correlation is seen, for example, in particles below 20 μm, and is evidenced by the lowering of the diameter dependence on the burn time, a dependence on pressure, and a reversal of the relative oxidizer strengths of carbon dioxide and water vapor. The strong dependence on temperature of burn time that is seen in nano-Al is not observed in these micron-sized particles. The burning rates of aluminum in these oxidizers can be added to predict an overall mixture burnout time adequately. This correlation should extend the ability of modelers to predict combustion rates of particles in solid rocket motor environments down to particle diameters of a few microns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号